/************************************************************************ Project: Welling Motor Control Paltform Filename: spi_master.c Partner Filename: spi_master.h Description: SPI master driver Complier: IAR Embedded Workbench for ARM 8.40.2 CPU TYPE : STM32F30x ************************************************************************* Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd. All rights reserved. ************************************************************************* ************************************************************************* Revising History (ECL of this file): M0_20170410, by liyue, create this file; ************************************************************************/ /************************************************************************ Beginning of File, do not put anything above here except notes Compiler Directives: *************************************************************************/ #ifndef _SPI_MASTER_C_ #define _SPI_MASTER_C_ #endif /************************************************************************ Included File *************************************************************************/ #include "syspar.h" #include "user.h" #include "spi_master.h" /************************************************************************* Exported Functions (N/A) *************************************************************************/ /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voResolverInit(void) { spi_stResolverOut.uwSpiThetaTmpZ1Pu = 0; spi_stResolverOut.swSpdTmpPu = 0; spi_stResolverOut.swSpdLpfTmpPu = 0; spi_stResolverOut.swSpdLpfTmpZ1Pu = 0; spi_stResolverOut.uwSpiThetaPu = 0; spi_stResolverOut.uwSpiOrignData = 0; spi_stResolverOut.slPllThetaPu = 0; spi_stResolverOut.uwPllThetaPu = 0; spi_stResolverOut.slThetaErrPu = 0; spi_stResolverOut.slThetaErrZ1Pu = 0; spi_stResolverOut.slThetaDeltaErrPu = 0; spi_stResolverOut.swSpdFbkPu = 0; spi_stResolverOut.slSpdFbkPu = 0; spi_stResolverOut.swSpdFbkLpfPu = 0; } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voResolverCoef(SPI_RESOLVER_COEFIN *in, SPI_RESOLVER_COEF *out) { UWORD uwMvcPu; ULONG ulDamper; UWORD uwDamper; if (in->uwFbHz < 10) { in->uwFbHz = 10; } else if (in->uwFbHz > 10000) { in->uwFbHz = 10000; } if (in->uwFreqTbcHz < 10) { in->uwFreqTbcHz = 10; } if (in->uwSpdPllMcoef > 100) { in->uwSpdPllMcoef = 100; } out->uwCurTs = ((ULONG)in->uwFbHz << 10) / in->uwFreqTbcHz; // Q10, TBC time out->uwCurTsPu = ((ULONG)205887 * in->uwFbHz) / in->uwFreqTbcHz; // Q15, Q15(2pi)-->205887 // /************************Speed PLL Coefficient*****************************/ // out->uwSpdPllKpPu = in->uwSpdPllKpPu; //Q14 // out->uwSpdPllKiPu = in->uwSpdPllKiPu; //Q14 // /************************Speed PLL Coefficient*****************************/ uwMvcPu = ((ULONG)in->uwSpdPllWvcHz << 10) / in->uwFbHz; // Q10 /* PLL Kp=M*w/sqrt(1+M^2) */ ulDamper = (1 + in->uwSpdPllMcoef * in->uwSpdPllMcoef) << 8; // Q8 uwDamper = mth_slSqrt(ulDamper); // Q4 out->uwSpdPllKpPu = ((ULONG)in->uwSpdPllMcoef * uwMvcPu / uwDamper) << 8; // Q10-Q4+Q8=Q14 /* PLL Ki=w^2*T_cnt_ctrl/sqrt(1+M^2) */ out->uwSpdPllKiPu = ((((ULONG)uwMvcPu * out->uwCurTsPu) / uwDamper) * uwMvcPu) >> 17; // Q10+Q15-Q4+Q10-Q17=Q14 } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voMagneticDetection() { // UBYTE MGL, MGH; // MGL = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_0); // MGH = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1); // if ((MGL != 0) || (MGH != 0)) // { // blMagRangeFltFlg = TRUE; // } } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ SLONG spi_pvt_slSpdFbkLpfPu, spi_pvt_slSpdLpfTmpPu; UWORD TstCnt = 0; UWORD TstThetaZ1Pu; SWORD TstSpdPu; UWORD DATA = 0; UWORD LASTDATA = 0; SWORD DATAERROR = 0; SWORD SPICNT = 0; UWORD THETACHANGE = 0; UWORD THETACHANGELast = 0; void spi_voResolver(SPI_RESOLVER_COEF *coef, SPI_RESOLVER_OUT *out) { UWORD uwSpiThetaTmpPu, uwSpiThetaTmpPu2; SWORD swThetaErrPu, swThetaCompPu; SWORD swSpdErrPu; ULONG ulTmp1, ulTmp2; if (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) == SET) { uwSpiThetaTmpPu = ((SLONG)(SPI_I2S_ReceiveData(SPI3))) >> 1; uwSpiThetaTmpPu &= 0x7FF8; uwSpiThetaTmpPu2 = uwSpiThetaTmpPu; /////////////////////////////////////////////////////////////////////////////////// // UWORD FLAG = 0; // SWORD JUDGEError = 0; // LASTDATA = DATA; // JUDGEError = uwSpiThetaTmpPu - out->swSpiThetaOffset2Pu; // if(JUDGEError < 0) // { // FLAG = 1; // } // if(JUDGEError >= 0 ) // { // FLAG = 0; // } // DATA = (ULONG)uwSpiThetaTmpPu + FLAG*32768 - out->swSpiThetaOffset2Pu; // DATAERROR = ((SWORD)DATA - (SWORD)LASTDATA); // if(DATAERROR < -16384) // { // SPICNT ++; // if(SPICNT == 5) // { // SPICNT=0; // } // } // // if(DATAERROR > 16384) // { // SPICNT--; // if(SPICNT<0) // { // SPICNT = 4; // } // } // // UWORD PERCENT = 0; // ULONG thetaFive2Seven = 0; // PERCENT = ((ULONG)72 * uwSpiThetaTmpPu / 32768) + SPICNT * 72; // thetaFive2Seven = ((SQWORD)32768 * 7 / 360) * PERCENT; //((SQWORD)32768 * 7 * PERCENT / (360 * 5)) // while(thetaFive2Seven > 32768) // { // thetaFive2Seven = thetaFive2Seven - 32768; // } // THETACHANGELast = THETACHANGE; // THETACHANGE = (UWORD)thetaFive2Seven; ///////////////////////////////////////////////////////////////////////////////////// swThetaCompPu = ((SLONG)out->swSpdLpfTmpPu * TLatency_TM) >> 10; // Q15, Consider decoding and SPI Latency:10us ulTmp1 = uwSpiThetaTmpPu + swThetaCompPu + out->swSpiThetaOffsetPu + cof_sl720DegreePu; uwSpiThetaTmpPu = ulTmp1 & 0x7FFF; ulTmp2 = uwSpiThetaTmpPu2 + cof_sl720DegreePu; uwSpiThetaTmpPu2 = ulTmp2 & 0x7FFF; out->uwSpiOrignData = uwSpiThetaTmpPu2; /* Judge the correctness of data*/ swThetaErrPu = uwSpiThetaTmpPu - out->uwSpiThetaTmpZ1Pu; out->uwSpiThetaTmpZ1Pu = uwSpiThetaTmpPu; if (swThetaErrPu <= -cof_sl180DegreePu) { swThetaErrPu += cof_sl360DegreePu; } if (swThetaErrPu >= cof_sl180DegreePu) { swThetaErrPu -= cof_sl360DegreePu; } // out->swSpdTmpPu = swThetaErrPu * 14629>>12; // Q15, f_tbs/fbase*2^12=14629 // out->swSpdTmpPu = swThetaErrPu * 58516>>12; // Q15, f_tbc/fbase*2^12=58516,f_tbc=10000; out->swSpdTmpPu = ((SLONG)swThetaErrPu * DIFF_COEF_TBC) >> 10; // Q15 spi_pvt_slSpdLpfTmpPu = (SLONG)0x0277 * (out->swSpdTmpPu - out->swSpdLpfTmpPu) + spi_pvt_slSpdLpfTmpPu; // 50Hz Q30 out->swSpdLpfTmpPu = spi_pvt_slSpdLpfTmpPu >> 15; swSpdErrPu = out->swSpdLpfTmpPu - out->swSpdLpfTmpZ1Pu; out->swSpdLpfTmpZ1Pu = out->swSpdLpfTmpPu; // spi_pvt_slSpdLpfTmpPu = 3*out->swSpdTmpPu/10 + 7*out->swSpdLpfTmpPu/10; // out->swSpdLpfTmpZ1Pu = spi_pvt_slSpdLpfTmpPu ; if ((swSpdErrPu < 6515) && (swSpdErrPu > -6515)) // 20deg electrical angle, ? rpm { out->uwSpiThetaPu = uwSpiThetaTmpPu; } else { blSpiThetaFltFlg = TRUE; } } else { blSpiThetaFltFlg = TRUE; } // TstCnt ++; // if(TstCnt > 3) // { // TstCnt =0; // TstSpdPu = ((SLONG)(out->uwSpiThetaPu - TstThetaZ1Pu) * DIFF_COEF_TBS) >>10; // TstThetaZ1Pu = out->uwSpiThetaPu; // } out->swSpdFbkPu = out->swSpdTmpPu; // /*Calculate speed: PLL method*/ // out->slThetaErrPu = (SLONG)out->uwSpiThetaPu - (out->uwPllThetaPu + (((SLONG)out->swSpdFbkLpfPu * TBC_TM) >> 10)); // if (out->slThetaErrPu >= cof_sl180DegreePu) // { // out->slThetaErrPu -= cof_sl360DegreePu; // } // if(out->slThetaErrPu <= -cof_sl180DegreePu) // { // out->slThetaErrPu += cof_sl360DegreePu; // } // out->slThetaDeltaErrPu = out->slThetaErrPu - out->slThetaErrZ1Pu; // out->slThetaErrZ1Pu = out->slThetaErrPu; // slKpTmpPu = out->slThetaDeltaErrPu * coef->uwSpdPllKpPu; //Q15+Q10=Q25 // slKitTmpPu = out->slThetaErrPu * coef->uwSpdPllKiPu; // slSpdFbkPu = slKpTmpPu + slKitTmpPu + out->slSpdFbkPu; // /* Limit the speed value to avoid overflow */ // if(slSpdFbkPu >= 0x20000000) // { // slSpdFbkPu = 0x20000000-1; //Q29 // } // if(slSpdFbkPu <= -0x20000000) // { // slSpdFbkPu = -0x20000000; //Q29 // } // out->slSpdFbkPu = slSpdFbkPu; //Q29 // //Q29 out->swSpdFbkPu = slSpdFbkPu >> 14; //Q15 // // slPllThetaPu = out->slPllThetaPu + (((SLONG)out->swSpdFbkPu * coef->uwCurTs)<<4); //Q15+Q10+Q4=Q29 // if(slPllThetaPu >= 0x20000000) // { // slPllThetaPu -= 0x20000000; // } // if(slPllThetaPu < 0) // { // slPllThetaPu += 0x20000000; // } // out->slPllThetaPu = slPllThetaPu; // out->uwPllThetaPu = slPllThetaPu >> 14; //Q15 = Q29 - Q14 //// spi_pvt_slSpdFbkLpfPu = (SLONG)0x00FF * (out->swSpdFbkPu - out->swSpdFbkLpfPu) + spi_pvt_slSpdFbkLpfPu; //20Hz Q30 //// out->swSpdFbkLpfPu = spi_pvt_slSpdFbkLpfPu >> 15; } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voResolverLock() { /* SPI1 resolver enable */ // SPI_Cmd(SPI3,ENABLE); /* CS signal enable */ IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x0550); while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) == SET) {} // SPI_Cmd(SPI3,DISABLE); IO_SPI3_NSS_DISABLE; } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voReadWriteSeneorReg(void) { UWORD uwReadBCTReg = 0, uwReadETXY = 0; UWORD uwWriteBCTReg = 0, uwWriteETXY = 0; _Bool blReadCorrectFlg = FALSE, blWriteFinishFlg = FALSE; UWORD SPI_DelayCnt1 = 0, SPI_DelayCnt2 = 0; // /* SPI1 resolver enable */ // SPI_Cmd(SPI3,ENABLE); /*Write command of read the BCT register value */ IO_SPI3_NSS_ENABLE; /*!< CS signal enable,for data update*/ while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x4200); // comp value while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwReadBCTReg = SPI_I2S_ReceiveData(SPI3); /*!< Read the first time*/ IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x0000); /*!< Write the second time*/ while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwReadBCTReg = SPI_I2S_ReceiveData(SPI3); /*!< Read the BCT register value*/ /*Write command of read the ETX ETY value */ IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x4300); // comp direction while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwReadETXY = SPI_I2S_ReceiveData(SPI3); /*!< Read the first time*/ IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x0000); /*!< Write the second time*/ while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwReadETXY = SPI_I2S_ReceiveData(SPI3); /*!< Read the ETX ETY value*/ if (uwReadBCTReg == 0x3000 && uwReadETXY == 0x0100) { blReadCorrectFlg = TRUE; } else { blReadCorrectFlg = FALSE; } if ((blReadCorrectFlg == FALSE) && (blWriteFinishFlg == FALSE)) { /* Write and Read BCT value*/ IO_SPI3_NSS_ENABLE; // Data update while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) // Discontinuous transmission, can not indicate send complete {} SPI_I2S_SendData(SPI3, 0x8230); // LSB,BCT=48 while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; // Data update while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwWriteBCTReg = SPI_I2S_ReceiveData(SPI3); /*delay 22ms*/ while (SPI_DelayCnt2 < 20) { SPI_DelayCnt1++; if (SPI_DelayCnt1 == 10000) { SPI_DelayCnt2++; SPI_DelayCnt1 = 0; } } IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x0000); while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwWriteBCTReg = SPI_I2S_ReceiveData(SPI3); /* Write and Read ETX or ETY */ IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x8301); while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwWriteETXY = SPI_I2S_ReceiveData(SPI3); /*delay 22ms*/ SPI_DelayCnt2 = 0; while (SPI_DelayCnt2 < 20) { SPI_DelayCnt1++; if (SPI_DelayCnt1 == 10000) { SPI_DelayCnt2++; SPI_DelayCnt1 = 0; } } IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x0000); while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} uwWriteETXY = SPI_I2S_ReceiveData(SPI3); if (uwWriteBCTReg == 0x3000 && uwWriteETXY == 0x0100) // MSB,BCT=48 { blWriteFinishFlg = TRUE; // Stored in EEPROM } else { blWriteFinishFlg = FALSE; } } while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; /* Write and Read RD value*/ IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x8980); // RD=1,Counterclockwise 8980; RD=0,Clockwise 8900 while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} /*delay 22ms*/ SPI_DelayCnt2 = 0; while (SPI_DelayCnt2 < 20) { SPI_DelayCnt1++; if (SPI_DelayCnt1 == 10000) { SPI_DelayCnt2++; SPI_DelayCnt1 = 0; } } IO_SPI3_NSS_ENABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) != SET) {} SPI_I2S_SendData(SPI3, 0x0000); while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_BSY) != RESET) {} IO_SPI3_NSS_DISABLE; while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) != SET) {} // SPI_Cmd(SPI3,DISABLE); } /************************************************************************* Local Functions (N/A) *************************************************************************/ /************************************************************************* Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd. All rights reserved. *************************************************************************/ #ifdef _SPI_MASTER_C_ #undef _SPI_MASTER_C_ #endif /************************************************************************* End of this File (EOF)! Do not put anything after this part! *************************************************************************/