spdctrmode.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: spdctrmode.c
  4. Partner Filename: spdctrmode.h
  5. Description: Speed control mode
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _SPDCTRMODE_C_
  20. #define _SPDCTRMODE_C_
  21. #endif
  22. /************************************************************************
  23. Included File
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "bikeinformation.h"
  28. #include "FuncLayerAPI.h"
  29. #include "AssistCurve.h"
  30. #include "cmdgennew.h"
  31. #include "CodePara.h"
  32. #include "CadAssist.h"
  33. //#include "api.h"
  34. #include "TimeTask_Event.h"
  35. #include "emcdeal.h"
  36. #include "LoadObsTheta.h"
  37. #include "obs.h"
  38. #include "FSM_1st.h"
  39. #include "cmdgennew.h"
  40. /************************************************************************
  41. Constant Table (N/A)
  42. *************************************************************************/
  43. /*************************************************************************
  44. Exported Functions (N/A)
  45. *************************************************************************/
  46. /***************************************************************
  47. Function: scm_voSpdCtrMdInit;
  48. Description: Speed control mode initializing function
  49. Call by: rmd_voModeSchd();
  50. Input Variables: N/A
  51. Output/Return Variables: N/A
  52. Subroutine Call: ...;
  53. Reference: N/A
  54. ****************************************************************/
  55. void scm_voSpdCtrMdInit(void)
  56. {
  57. // /* PWM init */
  58. // hw_voPWMInit();
  59. /*cmd handle Initial */
  60. cmd_voCmdInit();
  61. /* Current PI init */
  62. acr_voCurPIInit();
  63. /* Current decoupling init */
  64. acr_voUdqDcpInit();
  65. /* Sensorless observer init */
  66. // obs_voObsInit();
  67. /* SPI position sensor init */
  68. //spi_voResolverInit();
  69. /* Speed PI init */
  70. asr_voSpdPIInit();
  71. // asrnew_voSpdPIInit();
  72. torqobs_voInit();
  73. // LoadObsTheta_voInit();
  74. /* Flux weakening init */
  75. #if(FLUX_MODE == 0)
  76. spdflx_voInit();
  77. #elif(FLUX_MODE == 1)
  78. flx_voInit();
  79. #else
  80. //Config Error
  81. #endif
  82. // fw_voInit();
  83. /* Power Limit init */
  84. pwr_voPwrLimInit();
  85. /* SVPWM init */
  86. pwm_voInit();
  87. /* Dead time init */
  88. dbc_voDBCompInit();
  89. /* Contant voltage brake init */
  90. cvb_voBrakeInit();
  91. /* switchHall init */
  92. switchhall_voInit();
  93. /* Align pos startup open2clz clzloop init */
  94. align_voInit();
  95. scm_stSpdFbkLpf.slY.sw.hi = 0;
  96. scm_swSpdRefPu = 0;
  97. scm_swUalphaPu = 0; // Q14
  98. scm_swUbetaPu = 0; // Q14
  99. scm_stIdFbkLpf.slY.sl = 0; // Id feedback LPF
  100. scm_stIqFbkLpf.slY.sl = 0; // Iq feedback LPF
  101. scm_stIqRefforDesat.slY.sl = 0; // Iq Ref for desaturation Lpf
  102. scm_stIqFbkforDesat.slY.sl = 0; // Iq Fbk for desaturation Lpf
  103. scm_swIdRefPu = 0; // Q14
  104. scm_swIqRefPu = 0; // Q14
  105. scm_uwAngRefPu = 0; // Q15
  106. scm_uwAngParkPu = 0; // Q15
  107. scm_uwAngIParkPu = 0; // Q15
  108. scm_swRotateDir = -1; // Direction of motor rotate
  109. scm_ulStatCt = 0; // Status hold time count
  110. scm_uwAngManuPu = 0; // Q15, Angle given manually
  111. scm_slAngManuPu = 0;
  112. scm_slDragSpdPu = 0; // Q15, Drag speed
  113. scm_slDragSpdRefPu = 0; // Q29, intermediate Drag speed
  114. scm_blCurSwitchOvrFlg = FALSE; // Current switch over flag
  115. scm_blAngSwitchOvrFlg = FALSE; // Angle switch over flag
  116. scm_uwAngSwitchK = 0; // Angle switch weight value
  117. scm_swMotorPwrInWt = 0; // unit: w, Input power of motor
  118. scm_blCoefUpdateFlg = FALSE; // Coefficient update flag
  119. scm_stIqLoadLpf.slY.sl = 0;
  120. scm_stSpdFbkLpf.slY.sl = 0; // Speed feedback LPF
  121. scm_uwSpdFbkLpfAbsPu = 0; // Q15, Speed feedback LPF absolute
  122. scm_swMotorPwrInPu = 0; // Q15, Input power of motor
  123. scm_swSystemPwrInPu = 0; // Q15, Input power of System
  124. scm_stMotoPwrInLpf.slY.sl = 0; // Input power of motor after LPF
  125. scm_stPCBTempLpf.slY.sl = 0;
  126. scm_stMotorTempLpf.slY.sl = 0;
  127. scm_swMotorPwrInLpfWt = 0; // unit: 0.1w, Input power of motor after LPF
  128. scm_uwMotorPwrInAvgPu = 0; // Q15, Input power of motor after average filter
  129. scm_swIdFdbLpfPu = 0;
  130. scm_swIqFdbLpfPu = 0;
  131. scm_swUdRefPu = 0;
  132. scm_swUqRefPu = 0;
  133. scm_swUalphaFbkPu = 0;
  134. scm_swUbetaFbkPu = 0;
  135. scm_swUalphaRefPu = 0;
  136. scm_swUbetaRefPu = 0;
  137. scm_swUalphaCompPu = 0;
  138. scm_swUbetaCompPu = 0;
  139. scm_uwHfiAngZ1Pu = 0;
  140. scm_slAngSumPu = 0;
  141. scm_slAngErrPu = 0;
  142. scm_blAngSumOvrFlg = FALSE;
  143. scm_uwRunMdSw = 1;
  144. scm_ulRunMdSwCt = 0;
  145. scm_ulCloseCt = 0;
  146. scm_uwStartMd = cp_stControlPara.swStartMode;
  147. scm_uwStartMdSw = scm_uwStartMd;
  148. scm_uwInitPosMd = cp_stControlPara.swInitPosMode;
  149. scm_uwInitPosMdSw = scm_uwInitPosMd;
  150. scm_uwHfiOvrCnt = 0;
  151. scm_slIdRefPu = 0;
  152. }
  153. /***************************************************************
  154. Function: scm_voSpdCtrMdCoef;
  155. Description: Speed control mode TBS scheduler
  156. Call by: tbs_voIsr();
  157. Input Variables: N/A
  158. Output/Return Variables: N/A
  159. Subroutine Call: ...;
  160. Reference: N/A
  161. ****************************************************************/
  162. void scm_voSpdCtrMdCoef(void)
  163. {
  164. ULONG ulLpfTm; // unit: us
  165. UWORD uwLqPu = 0;
  166. ULONG ulAccel100rpmpsPu = USER_MOTOR_1000RPMPS2PU_Q29;
  167. if (abs(scm_swIqRefPu) < mn_swIqTurn1Pu)
  168. {
  169. scm_uwLqPu = cof_uwLqPu;
  170. }
  171. else
  172. {
  173. uwLqPu = mn_slLqTurn1Pu + ((SLONG)(abs(scm_swIqRefPu) - mn_swIqTurn1Pu) * mn_swKLqSat >> 10); // Q10
  174. if (uwLqPu < cof_uwLqMinPu)
  175. {
  176. scm_uwLqPu = cof_uwLqMinPu;
  177. }
  178. else if (uwLqPu > cof_uwLqPu)
  179. {
  180. scm_uwLqPu = cof_uwLqPu;
  181. }
  182. else
  183. {
  184. scm_uwLqPu = uwLqPu;
  185. }
  186. }
  187. /* Sensorless observer coefficient calculate */
  188. // obs_stObsCoefIn.uwRbOm = cof_uwRbOm; // Real Value, unit: 0.01Ohm, Resistance base
  189. // obs_stObsCoefIn.uwLbHm = cof_uwLbHm; // Real Value, unit: 0.01mH, Inductance base
  190. // obs_stObsCoefIn.uwFluxbWb = cof_uwFluxbWb; // Real Value, unit: 0.01mWb, Flux linkage base
  191. // obs_stObsCoefIn.uwFbHz = cof_uwFbHz; // Real Value, Unit:Hz frequency base
  192. // obs_stObsCoefIn.uwRsOm = cp_stMotorPara.swRsOhm; // Real Value, unit: 0.01Ohm, Resistance base
  193. // obs_stObsCoefIn.uwLqHm = ((ULONG)scm_uwLqPu * cof_uwLbHm) >> 10; // Real Value, unit: 0.01mH, q Inductance
  194. // obs_stObsCoefIn.uwLdHm = cp_stMotorPara.uwLdmH; // Real Value, unit: 0.01mH, d Inductance
  195. // obs_stObsCoefIn.uwFluxWb = cp_stMotorPara.swFluxWb; // Real Value, unit: 0.01mWb, Flux linkage
  196. // obs_stObsCoefIn.uwFreqTbcHz = FTBC_HZ; // Real Value, Unit:Hz Tbc
  197. // obs_stObsCoefIn.uwFluxDampingRatio = cp_stControlPara.swObsFluxPIDampratio; // Real Value, unit:0.1
  198. // obs_stObsCoefIn.uwFluxCrossFreqHz = cp_stControlPara.swObsFluxPICrossfreHz; // Real Value, unit:Hz
  199. // obs_stObsCoefIn.uwSpdPllWvcHz = cp_stControlPara.swObsSpdPLLBandWidthHz; // Real Value, Unit:Hz
  200. // obs_stObsCoefIn.uwSpdPllMcoef = cp_stControlPara.swObsSpdPLLM;
  201. // obs_voObsCoef(&obs_stObsCoefIn, &obs_stObsCoefPu);
  202. /* Speed PI coefficient calculate */
  203. asr_stSpdPICoefIn.uwUbVt = VBASE;
  204. asr_stSpdPICoefIn.uwIbAp = IBASE;
  205. asr_stSpdPICoefIn.uwFbHz = FBASE;
  206. asr_stSpdPICoefIn.uwFTbsHz = FTBS_HZ;
  207. asr_stSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  208. asr_stSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  209. asr_stSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  210. asr_stSpdPICoefIn.uwMcoef = cp_stControlPara.swAsrPIM;
  211. asr_stSpdPICoefIn.uwWvcHz = cp_stControlPara.swAsrPIBandwidth;
  212. asr_stSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  213. asr_voSpdPICoef(&asr_stSpdPICoefIn, &asr_stSpdPICoef);
  214. /* 拖拽参数初始化 */
  215. align_voCoef();
  216. /* Reduced Order Torque Observe coefficient calculate */
  217. torqobs_stCoefIn.uwUbVt = VBASE;
  218. torqobs_stCoefIn.uwIbAp = IBASE;
  219. torqobs_stCoefIn.uwFbHz = FBASE;
  220. torqobs_stCoefIn.uwFTbsHz = FTBS_HZ;
  221. torqobs_stCoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  222. torqobs_stCoefIn.uwMtJm = cp_stMotorPara.swJD << 2; // cp_stMotorPara.swJD;
  223. torqobs_stCoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  224. torqobs_stCoefIn.uwWtcHz = 50; // cp_stControlPara.swAsrPIBandwidth;
  225. torqobs_stCoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  226. torqobs_voCoef(&torqobs_stCoefIn, &torqobs_stCoef);
  227. mth_voLPFilterCoef(1000000 / 30, FTBS_HZ, &scm_stIqLoadLpf.uwKx); // 50Hz
  228. /* Full Order Torque Observer coefficient calculate */
  229. // LoadObsTheta_stCoefIn.uwFbHz = FBASE;
  230. // LoadObsTheta_stCoefIn.uwFluxbWb = cof_uwFluxbWb;
  231. // LoadObsTheta_stCoefIn.uwFluxWb = cp_stMotorPara.swFluxWb;
  232. // LoadObsTheta_stCoefIn.uwFTbcHz = FTBC_HZ;
  233. // LoadObsTheta_stCoefIn.uwJb = cof_uwJb;
  234. // LoadObsTheta_stCoefIn.uwMtJm = cp_stMotorPara.swJD << 2;
  235. // LoadObsTheta_stCoefIn.uwWtcHz = 200;
  236. // LoadObsTheta_stCoefIn.uwMCoef = 100;
  237. // LoadObsTheta_voCoef();
  238. /* Id PI coefficient calculate */
  239. acr_stCurIdPICoefIn.uwFbHz = FBASE;
  240. acr_stCurIdPICoefIn.uwUbVt = VBASE;
  241. acr_stCurIdPICoefIn.uwIbAp = IBASE;
  242. acr_stCurIdPICoefIn.uwLHm = cp_stMotorPara.uwLdmH;
  243. acr_stCurIdPICoefIn.uwMtRsOh = cp_stMotorPara.swRsOhm;
  244. acr_stCurIdPICoefIn.uwFTbcHz = FTBC_HZ;
  245. acr_stCurIdPICoefIn.uwRaCoef = cp_stControlPara.swAcrRaCoef; // Coefficient of Active Resistance
  246. acr_stCurIdPICoefIn.uwWicHz = cp_stControlPara.swAcrPIBandwidth; // Current loop frequency bandwidth
  247. acr_voCurPICoef(&acr_stCurIdPICoefIn, &acr_stCurIdPICoef);
  248. /* Iq PI coefficient calculate */
  249. acr_stCurIqPICoefIn.uwFbHz = FBASE;
  250. acr_stCurIqPICoefIn.uwUbVt = VBASE;
  251. acr_stCurIqPICoefIn.uwIbAp = IBASE;
  252. acr_stCurIqPICoefIn.uwLHm = cp_stMotorPara.uwLqmH;
  253. acr_stCurIqPICoefIn.uwMtRsOh = cp_stMotorPara.swRsOhm;
  254. acr_stCurIqPICoefIn.uwFTbcHz = FTBC_HZ;
  255. acr_stCurIqPICoefIn.uwRaCoef = cp_stControlPara.swAcrRaCoef;
  256. acr_stCurIqPICoefIn.uwWicHz = cp_stControlPara.swAcrPIBandwidth;
  257. acr_voCurPICoef(&acr_stCurIqPICoefIn, &acr_stCurIqPICoef);
  258. /* Current decoupling coefficient calculate */
  259. acr_stUdqDcpCoefIn.uwLdHm = cp_stMotorPara.uwLdmH;
  260. acr_stUdqDcpCoefIn.uwLqHm = cp_stMotorPara.uwLqmH;
  261. acr_stUdqDcpCoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  262. acr_stUdqDcpCoefIn.uwUbVt = VBASE;
  263. acr_stUdqDcpCoefIn.uwFbHz = FBASE;
  264. acr_stUdqDcpCoefIn.uwIbAp = IBASE;
  265. acr_voUdqDcpCoef(&acr_stUdqDcpCoefIn, &acr_stUdqDcpCoef);
  266. /* Id feedback low pass filter coef */
  267. ulLpfTm = 1000000 / cp_stControlPara.swAcrCurFbLpfFre;
  268. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIdFbkLpf.uwKx);
  269. /* Iq feedback low pass filter coef */
  270. ulLpfTm = 1000000 / cp_stControlPara.swAcrCurFbLpfFre;
  271. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIqFbkLpf.uwKx);
  272. ulLpfTm = 1000000 / 100; //1000hz
  273. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIqRefforDesat.uwKx);
  274. ulLpfTm = 1000000 / 100; //1000hz
  275. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIqFbkforDesat.uwKx);
  276. /* Coefficient update only once */
  277. if (!scm_blCoefUpdateFlg)
  278. {
  279. /* Deadband compensation coefficient calculate */
  280. dbc_stDbCompCoefIn.uwDeadBandTimeNs = cp_stControlPara.swIPMDeadTimeNs; // unit: ns, Dead band time
  281. dbc_stDbCompCoefIn.uwPosSwOnTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-on time at positive current
  282. dbc_stDbCompCoefIn.uwPosSwOffTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-off time at positive current
  283. dbc_stDbCompCoefIn.uwNegSwOnTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-on time at negative current
  284. dbc_stDbCompCoefIn.uwNegSwOffTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-off time at negative current
  285. dbc_stDbCompCoefIn.ulPWMPerUs = PWM_PERIOD_US; // unit: 0.1us, PWM period
  286. dbc_stDbCompCoefIn.uwKcoefVtPerAp = cp_stControlPara.swDbcK; // Q6, Deadband compensation slope coefficient
  287. dbc_stDbCompCoefIn.uwVBaseVt = VBASE; // Q0, Vbase
  288. dbc_stDbCompCoefIn.uwIBaseAp = IBASE; // Q0, Ibase
  289. dbc_voDBCompCoef(&dbc_stDbCompCoefIn, &dbc_stDbCompCoef);
  290. /* Flux weakening coefficient calculate */
  291. #if(FLUX_MODE == 0)
  292. //spdflx_stCtrlCoefIn.swRSpeedPu = (((SLONG)cp_stMotorPara.swRSpeedRpm * (SLONG)cp_stMotorPara.swMotrPolePairs / 60)/ FBASE)*2^15; 化简为如下,避免溢出
  293. spdflx_stCtrlCoefIn.swRSpeedPu = (SWORD)((8192L)*(SLONG)cp_stMotorPara.swRSpeedRpm * (SLONG)cp_stMotorPara.swMotrPolePairs / (15 * FBASE));
  294. spdflx_stCtrlCoefIn.swIdMinPu = (SWORD)((16384L)*(SLONG)cp_stMotorPara.swIdMinA / IBASE);
  295. spdflx_stCtrlCoefIn.swIpeakMaxPu = (SWORD)((16384L)*(SLONG)cp_stMotorPara.swIpeakMaxA / IBASE);
  296. spdflx_voCoef(&spdflx_stCtrlCoefIn, &spdflx_stCtrlCoef);
  297. #elif(FLUX_MODE == 1)
  298. flx_stCtrlCoefIn.swIdMaxAp = (SWORD)cp_stMotorPara.swIdMaxA; // Q0,unit: 0.01A
  299. flx_stCtrlCoefIn.swIdMinAp = (SWORD)cp_stMotorPara.swIdMinA; // Q0,unit: 0.01A
  300. flx_stCtrlCoefIn.uwRsOhm = cp_stMotorPara.swRsOhm; // Q0,unit: 0.1mOhm
  301. flx_stCtrlCoefIn.swIdPIOutMinAp = (SWORD)cp_stControlPara.swFwIdPIOutMin; // Q0,unit: 0.01A
  302. flx_stCtrlCoefIn.uwCharCurCrossFreqHz = cp_stControlPara.swFwCharCurCrossFre; // Q0,unit: SQRT(1/2piR)
  303. flx_stCtrlCoefIn.uwCharCurDampRatio = cp_stControlPara.swFwCharCurDampRatio; // Q0,unit: SQRT(pi/2R)
  304. flx_stCtrlCoefIn.uwIdRegKpPu = cp_stControlPara.swFwIdKpPu; // Q16,unit: A/V2
  305. flx_stCtrlCoefIn.uwIdRegKiPu = cp_stControlPara.swFwIdKiPu; // Q16,unit: A/V2
  306. flx_stCtrlCoefIn.uwPWMDutyMax = cp_stControlPara.swFwPWMMaxDuty; // Q0,%
  307. flx_stCtrlCoefIn.uwVdcLpfFreqHz = cp_stControlPara.swFwVdcLPFFre; // Q0,unit: Hz
  308. flx_stCtrlCoefIn.uwVdcMinCalcTmMs = cp_stControlPara.swFwVdcMinCalTMms; // Q0,unit: ms
  309. flx_stCtrlCoefIn.uwFwCurLimAp = cp_stMotorPara.swIpeakMaxA; // Q0,unit: 0.01A
  310. flx_stCtrlCoefIn.uwIdMinLimRatio = cp_stControlPara.swFwIdMinLimRatio; // Q0,0.01
  311. flx_stCtrlCoefIn.uwUbVt = VBASE; // Q0,unit: 0.1V, Voltage base
  312. flx_stCtrlCoefIn.uwFreqTbcHz = FTBC_HZ; // Q0
  313. flx_stCtrlCoefIn.uwIBaseAp = IBASE; // Q0,unit: 0.01A, Base Current
  314. flx_stCtrlCoefIn.uwFBaseHz = FBASE; // Q0,unit: Hz, Base Frequency
  315. flx_voCoef(&flx_stCtrlCoefIn, &flx_stCtrlCoef);
  316. // fw_stFluxWeakeningCoefInPu
  317. // fw_voFluxWeakeningCoef(fw_stFluxWeakeningCoefInPu,flx_stCtrlCoef)
  318. #else
  319. //Config Error
  320. #endif
  321. /* Constant vlotage brake coefficient calculate */
  322. cvb_stBrakeCoefIn.uwVdcCvbVt = cp_stControlPara.swCvbConstantVolBrakeV;
  323. cvb_stBrakeCoefIn.uwLowSpdRpm = cp_stControlPara.swCvbConstantSpdLowRpm;
  324. cvb_stBrakeCoefIn.swIqRefMaxAp = cp_stMotorPara.swIpeakMaxA;
  325. cvb_stBrakeCoefIn.swIdRefMaxAp = cp_stMotorPara.swIdMaxA;
  326. cvb_stBrakeCoefIn.swIdRefMinAp = cp_stMotorPara.swIdMinA;
  327. cvb_stBrakeCoefIn.uwVBaseVt = VBASE;
  328. cvb_stBrakeCoefIn.uwIBaseAp = IBASE;
  329. cvb_stBrakeCoefIn.uwFBaseHz = FBASE;
  330. cvb_stBrakeCoefIn.uwMotorPairs = cp_stMotorPara.swMotrPolePairs;
  331. cvb_voBrakeCoef(&cvb_stBrakeCoefIn, &cvb_stBrakeCoef);
  332. /* Speed feedback low pass filter coef */
  333. ulLpfTm = 1000000 / cp_stControlPara.swAsrSpdFbLPFFre;
  334. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stSpdFbkLpf.uwKx);
  335. /* Power limit coef */
  336. ulLpfTm = 1000000 / cp_stControlPara.swPwrLimitLPFFre;
  337. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stMotoPwrInLpf.uwKx);
  338. ulLpfTm = 1000000 / 10;
  339. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stPCBTempLpf.uwKx);
  340. ulLpfTm = 1000000 / 10;
  341. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stMotorTempLpf.uwKx);
  342. // /* Torque Sensor limit coef */
  343. // ulLpfTm = 1000000 / torsensor_stTorSensorCof.uwTorSensorLPFFrq;
  344. // mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stTorSensorLpf.uwKx);
  345. // /* Bike Throttle limit coef */
  346. // ulLpfTm = 1000000 / bikethrottle_stBikeThrottleCof.uwThrottleVolLPFFrq;
  347. // mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stBikeThrottleLpf.uwKx);
  348. pwr_stPwrLimCofIn.swPwrLimW = cp_stControlPara.swPwrLimitValWtCALC; // Q0, unit: 0.1w, Power limit value
  349. pwr_stPwrLimCofIn.uwPwrErrW = cp_stControlPara.swPwrLimitErrWt; // Q0, unit: 0.1w, Start power limit when "VAL - ERR"
  350. pwr_stPwrLimCofIn.swIqMaxAp = cp_stMotorPara.swIpeakMaxA; // Q0, unit: 0.01A, Max phase current (peak value)
  351. pwr_stPwrLimCofIn.uwIBaseAp = IBASE; // Q0,unit: 0.01A, Base Current
  352. pwr_stPwrLimCofIn.uwUbVt = VBASE; // Q0,unit: 0.1V, Voltage base
  353. pwr_stPwrLimCofIn.uwPwrLimPIKp = cp_stControlPara.swPwrLimitKpPu;
  354. pwr_stPwrLimCofIn.uwPwrLimPIKi = cp_stControlPara.swPwrLimitKiPu;
  355. pwr_stPwrLimCofIn.uwPwrLimSTARTCe = cp_stControlPara.swAlmPwrLimitStartTempVal;
  356. pwr_stPwrLimCofIn.uwPwrLimENDCe = cp_stControlPara.swAlmOverHeatCeVal;
  357. pwr_stPwrLimCofIn.uwPwrLimMotTempSTARTCe = cp_stControlPara.swAlmPwrLimitMotorStartTempVal;
  358. pwr_stPwrLimCofIn.uwPwrLimMotTempENDCe = cp_stControlPara.swAlmMotorOverHeatCeVal;
  359. pwr_stPwrLimCofIn.uwPwrLimStartBatCap = PWRLIM_START_BATCAP;
  360. pwr_stPwrLimCofIn.uwPwrLimEndBatCap = PWRLIM_END_BATCAP;
  361. pwr_voPwrLimCof(&pwr_stPwrLimCofIn, &pwr_stPwrLimCof);
  362. /*Accelaration&Decelaration limit*/
  363. if (abs(scm_swSpdRefPu) < USER_MOTOR_300RPM2PU)
  364. {
  365. cmd_stCmdCoefIn.ulAccelPu = ulAccel100rpmpsPu; // Q29
  366. }
  367. else
  368. {
  369. cmd_stCmdCoefIn.ulAccelPu = ulAccel100rpmpsPu; // Q29
  370. }
  371. cmd_stCmdCoefIn.ulDecelPu = USER_MOTOR_3000RPMPS2PU_Q29; // Q29
  372. cmd_stCmdCoefIn.swBrakeSpdDeltaPu = USER_MOTOR_100RPM2PU;
  373. cmd_voCmdCoef(&cmd_stCmdCoefIn, &cmd_stCmdCoef);
  374. pwm_stGenCoefIn.uwPWMDutyMax = cp_stControlPara.swPWMMaxDuty;
  375. pwm_stGenCoefIn.uwPWM7To5Duty = cp_stControlPara.swPWM7to5Duty;
  376. pwm_stGenCoefIn.uwPWMMinSample1Pu = cp_stControlPara.swPWMMinSampleDuty1;
  377. pwm_stGenCoefIn.uwPWMMinSample2Pu = cp_stControlPara.swPWMMinSampleDuty2;
  378. pwm_stGenCoefIn.uwPWMMinSample3Pu = cp_stControlPara.swPWMMinSampleDuty3;
  379. pwm_stGenCoefIn.uwSampleSteadyPu = cp_stControlPara.swPWMSampleToSteady;
  380. pwm_stGenCoefIn.uwSingelResisSamplePu = cp_stControlPara.swPWMSampleSigR;
  381. pwm_stGenCoefIn.uwOvmNo = cp_stControlPara.swPWMOverMdlMode;
  382. pwm_stGenCoefIn.uwPWMPd = HW_PWM_PERIOD;
  383. pwm_voGenCoef(&pwm_stGenCoefIn, &pwm_stGenCoef);
  384. scm_uwAcrLimCof = (UWORD)((ULONG)cp_stControlPara.swPWMMaxDuty * cp_stControlPara.uwAcrCurOutLim / 1000); // Q15
  385. scm_uwUdcpLimCof = (UWORD)((ULONG)cp_stControlPara.swPWMMaxDuty * cp_stControlPara.uwAcrUdcpOutLim / 1000); // Q15
  386. }
  387. }
  388. /***************************************************************
  389. Function: scm_voSpdCtrMdTbs;
  390. Description: Speed control mode TBS scheduler
  391. Call by: tbs_voIsr();
  392. Input Variables: N/A
  393. Output/Return Variables: N/A
  394. Subroutine Call: ...;
  395. Reference: N/A
  396. ****************************************************************/
  397. SWORD testIqref;
  398. void scm_voSpdCtrMdTbs(void)
  399. {
  400. SWORD swIqLowerPu;
  401. /* Speed feedback LPF */
  402. if (cp_stFlg.ThetaGetModelSelect == ANG_OBSERVER)
  403. {
  404. // mth_voLPFilter(obs_stObsOutPu.swElecFreqPu, &scm_stSpdFbkLpf);
  405. }
  406. else if (cp_stFlg.ThetaGetModelSelect == ANG_RESOLVER)
  407. {
  408. // mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stSpdFbkLpf);
  409. }
  410. else if (cp_stFlg.ThetaGetModelSelect == ANG_SWITCHHALL)
  411. {
  412. scm_stSpdFbkLpf.slY.sw.hi = switchhall_stOut.swLowSpdLpfPu;
  413. }
  414. else
  415. {}
  416. /* Speed feedback Absolute */
  417. scm_uwSpdFbkLpfAbsPu = abs(scm_stSpdFbkLpf.slY.sw.hi);
  418. /*============================================================
  419. Speed command generator to generate speed ramp
  420. =============================================================*/
  421. if (curSpeed_state.state == ClzLoop || curSpeed_state.state == Open2Clz)
  422. {
  423. cmd_stCmdIn.swSpdCmdRpm = uart_slSpdRefRpm;
  424. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  425. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  426. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  427. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  428. }
  429. else if (curSpeed_state.state == StartUp)
  430. {
  431. SWORD tempSpeed = 0;
  432. tempSpeed = (cp_stControlPara.swDragSpdHz * 60 / cp_stMotorPara.swMotrPolePairs);
  433. if (cp_stFlg.RunModelSelect == ClZLOOP)
  434. {
  435. if (uart_slSpdRefRpm > 0)
  436. {
  437. cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  438. }
  439. else
  440. {
  441. cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  442. }
  443. }
  444. else if (cp_stFlg.RunModelSelect == VFContorl || cp_stFlg.RunModelSelect == IFContorl)
  445. {
  446. if (uart_slSpdRefRpm > 0)
  447. {
  448. cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  449. }
  450. else
  451. {
  452. cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  453. }
  454. // if(cp_stFlg.RotateDirectionSelect == ForwardRotate)
  455. // {
  456. // cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  457. // }
  458. // else
  459. // {
  460. // cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  461. // }
  462. }
  463. else
  464. {}
  465. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  466. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  467. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  468. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  469. }
  470. else
  471. {
  472. cmd_stCmdIn.swSpdCmdRpm = 0;
  473. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  474. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  475. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  476. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  477. }
  478. /*=======================================================================
  479. Speed PI Controller
  480. =======================================================================*/
  481. asr_stSpdPIIn.swSpdRefPu = scm_swSpdRefPu; // Q15
  482. // asr_stSpdPIIn.swSpdFdbPu = switchhall_stOut.swLowSpdPu;
  483. asr_stSpdPIIn.swSpdFdbPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  484. if (curSpeed_state.state != ClzLoop)
  485. {
  486. swIqLowerPu = flx_stCtrlOut.swIqLimPu;
  487. }
  488. else
  489. {
  490. swIqLowerPu = (flx_stCtrlOut.swIqLimPu < abs(pwr_stPwrLimOut2.swIqLimPu)) ? flx_stCtrlOut.swIqLimPu : abs(pwr_stPwrLimOut2.swIqLimPu);
  491. swIqLowerPu = (swIqLowerPu < abs(cvb_stBrakeOut.swIqLimPu)) ? swIqLowerPu : abs(cvb_stBrakeOut.swIqLimPu);
  492. }
  493. if (scm_swRotateDir > 0)
  494. {
  495. asr_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  496. // asr_stSpdPIIn.swIqMinPu = -swIqLowerPu;
  497. asr_stSpdPIIn.swIqMinPu = 0;
  498. }
  499. else
  500. {
  501. asr_stSpdPIIn.swIqMaxPu = 0;
  502. // asr_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  503. asr_stSpdPIIn.swIqMinPu = -swIqLowerPu;
  504. }
  505. asr_voSpdPI(&asr_stSpdPIIn, &asr_stSpdPICoef, &asr_stSpdPIOut);
  506. // swCurRefrompu = (abs(asr_stSpdPIOut.swIqRefPu) < abs(uart_swTorqRefNm)) ? abs(asr_stSpdPIOut.swIqRefPu) : abs(uart_swTorqRefNm);
  507. // swCurRefrompu = -swCurRefrompu;
  508. swCurRefrompu = asr_stSpdPIOut.swIqRefPu;
  509. /* New ASR */
  510. // asrnew_stSpdPIIn.swSpdRefPu = scm_swSpdRefPu; // Q15
  511. // asrnew_stSpdPIIn.swSpdFdbPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  512. // if (scm_swRotateDir > 0)
  513. // {
  514. // asrnew_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  515. // asrnew_stSpdPIIn.swIqMinPu = 0;//-swIqLowerPu;
  516. // }
  517. // else
  518. // {
  519. // asrnew_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  520. // asrnew_stSpdPIIn.swIqMinPu = 0;//-swIqLowerPu;
  521. // }
  522. // asrnew_voSpdPI(&asrnew_stSpdPIIn, &asrnew_stSpdPICoef, &asrnew_stSpdPIOut);
  523. // swCurRefrompu = asrnew_stSpdPIOut.swIqRefPu;
  524. // swCurRefrompu = testIqref;
  525. curSpeed_state.Tbs_hook();
  526. }
  527. SWORD deltC, switchCNT, switchflg;
  528. SWORD swTmpSpdRate = 0;
  529. LPF_OUT swTmpSpdRateLpf;
  530. SWORD swTmpSpdFbkPuZ1 = 0;
  531. SLONG slTmpAcc;
  532. SWORD swTestIqref;
  533. void scm_voTorqCtrMdTbs(void)
  534. {
  535. SWORD swIqLowerPu;
  536. /* Speed feedback LPF */
  537. if (cp_stFlg.ThetaGetModelSelect == ANG_OBSERVER)
  538. {
  539. // mth_voLPFilter(obs_stObsOutPu.swElecFreqPu, &scm_stSpdFbkLpf);
  540. }
  541. else if (cp_stFlg.ThetaGetModelSelect == ANG_RESOLVER)
  542. {
  543. // mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stSpdFbkLpf);
  544. }
  545. else if (cp_stFlg.ThetaGetModelSelect == ANG_SWITCHHALL)
  546. {
  547. scm_stSpdFbkLpf.slY.sw.hi = switchhall_stOut.swLowSpdLpfPu;
  548. }
  549. else
  550. {}
  551. /* Speed feedback Absolute */
  552. scm_uwSpdFbkLpfAbsPu = abs(scm_stSpdFbkLpf.slY.sw.hi);
  553. // /*============================================================
  554. // Speed command generator to generate speed ramp
  555. // =============================================================*/
  556. // cmd_stCmdIn.swSpdCmdRpm = -(((SLONG)cadence_stFreGetOut.uwLPFFrequencyPu * 8000) >> 10) * 6000 >> 15;
  557. // cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  558. // cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  559. // /*=======================================================================
  560. // Get speed command
  561. // =======================================================================*/
  562. // scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  563. // scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; //cmd_stCmdGenOut.Out.swSpdRefPu;
  564. /*=======================================================================
  565. Speed PI Controller
  566. =======================================================================*/
  567. swIqLowerPu = (flx_stCtrlOut.swIqLimPu < abs(pwr_stPwrLimOut2.swIqLimPu)) ? flx_stCtrlOut.swIqLimPu : abs(pwr_stPwrLimOut2.swIqLimPu);
  568. swIqLowerPu = (swIqLowerPu < abs(cvb_stBrakeOut.swIqLimPu)) ? swIqLowerPu : abs(cvb_stBrakeOut.swIqLimPu);
  569. // if (uart_swTorqRefNm > swIqLowerPu)
  570. // {
  571. // uart_swTorqRefNm = swIqLowerPu;
  572. // }
  573. // else if (uart_swTorqRefNm < -swIqLowerPu)
  574. // {
  575. // uart_swTorqRefNm = -swIqLowerPu;
  576. // }
  577. // else
  578. // {}
  579. // swCurRefrompu = uart_swTorqRefNm;
  580. /* Torque observe */
  581. if (scm_swRotateDir > 0)
  582. {
  583. torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  584. torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  585. }
  586. else
  587. {
  588. torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  589. torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  590. }
  591. torqobs_stCalIn.swIqfbkPu = scm_swIqFdbLpfPu;
  592. torqobs_stCalIn.swSpdPu = switchhall_stOut.swLowSpdPu;
  593. torqobs_voCal(&torqobs_stCalIn, &torqobs_stCoef, &torqobs_stCalOut);
  594. mth_voLPFilter((torqobs_stCalOut.swIqLoadPu + scm_swIqFdbLpfPu), &scm_stIqLoadLpf);
  595. // mth_voLPFilter(LoadObsTheta_Y.swIqCompPu, &scm_stIqLoadLpf);
  596. ///////test////////
  597. // mth_voLPFilterCoef(1000000 / 15, FTBS_HZ, &swTmpSpdRateLpf.uwKx); //30Hz,TBS
  598. // mth_voLPFilter(LoadObsTheta_Y.swIqCompPu, &swTmpSpdRateLpf);
  599. /* Spd Fbk Compensation Calculate */
  600. // swTmpSpdRate = switchhall_stOut.swLowSpdPu - swTmpSpdFbkPuZ1; //Q15
  601. // mth_voLPFilterCoef(1000000 / 30, FTBS_HZ, &swTmpSpdRateLpf.uwKx); //30Hz,TBS
  602. // mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  603. // swTmpSpdFbkPuZ1 = switchhall_stOut.swLowSpdPu;
  604. // slTmpAcc = (SLONG)swTmpSpdRateLpf.slY.sw.hi * FTBS_HZ / FBASE; //Q15
  605. /* Iqref Compensation */
  606. if (((uart_swTorqRefNm < -200) || (uart_swTorqRefNm > 200)))
  607. {
  608. /* Without Comp */
  609. swTestIqref = uart_swTorqRefNm;
  610. /* Open Loop */
  611. // swTestIqref = uart_swTorqRefNm - (((SLONG)slTmpAcc* cof_uwJmPu << 11) / cof_uwFluxPu); //Q15+Q0+Q11-Q12=Q14
  612. /* Observer */
  613. // swTestIqref = uart_swTorqRefNm - scm_stIqLoadLpf.slY.sw.hi;
  614. // swTestIqref = uart_swTorqRefNm - swTmpSpdRateLpf.slY.sw.hi;
  615. }
  616. else
  617. {
  618. swTestIqref = uart_swTorqRefNm;
  619. }
  620. if (swTestIqref > swIqLowerPu)
  621. {
  622. swTestIqref = swIqLowerPu;
  623. }
  624. else if (swTestIqref < -swIqLowerPu)
  625. {
  626. swTestIqref = -swIqLowerPu;
  627. }
  628. else
  629. {}
  630. swCurRefrompu = swTestIqref;
  631. curSpeed_state.Tbs_hook();
  632. }
  633. /***************************************************************
  634. Function: scm_voSpdCtrMdUpTbc;
  635. Description: Speed control mode TBC scheduler
  636. Call by: tbc_voIsr();
  637. Input Variables: N/A
  638. Output/Return Variables: N/A
  639. Subroutine Call: ...;
  640. Reference: N/A
  641. ****************************************************************/
  642. CRD_PARK_IN Test_U_in;
  643. CRD_PARK_OUT Test_U_out;
  644. void scm_voSpdCtrMdUpTbc(void)
  645. {
  646. /*=======================================================================
  647. Max voltage of current PI out
  648. =======================================================================*/
  649. scm_swVsLimPu = (SWORD)((ULONG)adc_stUpOut.uwVdcLpfPu * scm_uwAcrLimCof >> 15); // Q14+Q15-Q15=Q14
  650. scm_swVsDcpLimPu_Assist = (SWORD)((ULONG)adc_stUpOut.uwVdcLpfPu * scm_uwUdcpLimCof >> 15); // Q14+Q15-Q15=Q14
  651. scm_swVsDcpLimPu = scm_swVsDcpLimPu_Assist;
  652. /*=======================================================================
  653. Voltage get
  654. =======================================================================*/
  655. /* Get Ualpha & Ubeta from command voltage */
  656. scm_swUalphaPu = pwm_stGenOut.swUalphaPu - scm_swUalphaCompPu; // Q14
  657. scm_swUbetaPu = pwm_stGenOut.swUbetaPu - scm_swUbetaCompPu; // Q14
  658. /*=======================================================================
  659. Startup control FSM
  660. =======================================================================*/
  661. scm_voSpdCtrMdFSM();
  662. curSpeed_state.Tbcup_hook();
  663. }
  664. /***************************************************************
  665. Function: scm_voSpdCtrMdTbc;
  666. Description: Speed control mode TBC scheduler
  667. Call by: tbc_voIsr();
  668. Input Variables: N/A
  669. Output/Return Variables: N/A
  670. Subroutine Call: ...;
  671. Reference: N/A
  672. ****************************************************************/
  673. UWORD DCPswitch = 0;
  674. UWORD testtheta = 0;
  675. SWORD IQqqqqq = 0, SwitchFlggg = 1;
  676. SLONG IQCNT = 0;
  677. UWORD uwIqStopCnt;
  678. SLONG swUqmax,swUqmin;
  679. SLONG swUdmax,swUdmin;
  680. UWORD UqDecCount = 0, UdDecCount = 0;
  681. void scm_voSpdCtrMdDownTbc(void)
  682. {
  683. /*=======================================================================
  684. Clark transformation for phase current
  685. =======================================================================*/
  686. crd_stClarkIn.swAPu = adc_stDownOut.swIaPu; // Q14
  687. crd_stClarkIn.swBPu = adc_stDownOut.swIbPu; // Q14
  688. crd_stClarkIn.swCPu = adc_stDownOut.swIcPu; // Q14
  689. crd_voClark(&crd_stClarkIn, &crd_stCurClarkOut);
  690. /*=======================================================================
  691. Code Of spdFSM
  692. =======================================================================*/
  693. curSpeed_state.Tbcdown_hook();
  694. // if(SwitchFlggg == 0)
  695. // {
  696. // IQCNT++;
  697. // scm_swIqRefPu = -4000;
  698. // if(IQCNT > 2000)
  699. // {
  700. // IQCNT=0;
  701. // SwitchFlggg =1;
  702. // }
  703. // }
  704. // else
  705. // {
  706. // scm_swIqRefPu = IQqqqqq;
  707. // }
  708. //
  709. /*=======================================================================
  710. Current loop control
  711. =======================================================================*/
  712. /* Get Id & Iq for current PI control */
  713. /*=======================================================================
  714. Park transformation for current
  715. =======================================================================*/
  716. crd_stParkIn.swAlphaPu = crd_stCurClarkOut.swAlphaPu; // Q14
  717. crd_stParkIn.swBetaPu = crd_stCurClarkOut.swBetaPu; // Q14
  718. crd_stParkIn.uwThetaPu = scm_uwAngParkPu; // Q15
  719. crd_voPark(&crd_stParkIn, &crd_stCurParkOut);
  720. /*=======================================================================
  721. Current feedback LPF
  722. =======================================================================*/
  723. mth_voLPFilter(crd_stCurParkOut.swDPu, &scm_stIdFbkLpf);
  724. mth_voLPFilter(crd_stCurParkOut.swQPu, &scm_stIqFbkLpf);
  725. scm_swIdFdbLpfPu = scm_stIdFbkLpf.slY.sw.hi;
  726. scm_swIqFdbLpfPu = scm_stIqFbkLpf.slY.sw.hi;
  727. // scm_swIdFdbLpfPu = crd_stCurParkOut.swDPu;
  728. // scm_swIqFdbLpfPu = crd_stCurParkOut.swQPu;
  729. /*=======================================================================
  730. Calculate input power of motor
  731. =======================================================================*/
  732. scm_swSystemPwrInPu =
  733. ((((SLONG)adc_stUpOut.uwVdcLpfPu * (SLONG)adc_stUpOut.uwIbusAvgLpfPu) >> 13) * (SLONG)683) >> 10; // power = udc*idc; Q14+Q14-Q13=Q15
  734. scm_swMotorPwrInPu = ((SLONG)Test_U_out.swDPu * scm_swIdFdbLpfPu + (SLONG)Test_U_out.swQPu * scm_swIqFdbLpfPu) >> 13; // Q14+Q14-Q13=Q15
  735. mth_voLPFilter(scm_swMotorPwrInPu, &scm_stMotoPwrInLpf);
  736. scm_swMotorPwrInLpfWt = scm_stMotoPwrInLpf.slY.sw.hi * cof_uwPbWt >> 15; // unit: 0.1w
  737. /*=======================================================================
  738. Id current PI control
  739. =======================================================================*/
  740. DCPswitch = 0; // 0 with forwardFeedBack 1 without forwardFeedBack
  741. acr_stCurIdPIIn.swCurRefPu = scm_swIdRefPu; // Q14
  742. acr_stCurIdPIIn.swCurFdbPu = scm_swIdFdbLpfPu;
  743. if (DCPswitch == 1)
  744. {
  745. acr_stCurIdPIIn.swUmaxPu = scm_swVsDcpLimPu; // Q14
  746. acr_stCurIdPIIn.swUminPu = -scm_swVsDcpLimPu; // Q14
  747. }
  748. else if (DCPswitch == 0)
  749. {
  750. if(switch_flg.SysRun_Flag == FALSE)
  751. {
  752. if(UdDecCount>=100) // each 100/8000s decrease to 1000/1024*U
  753. {
  754. UdDecCount = 0;
  755. acr_stCurIdPIIn.swUmaxPu = (SWORD)(((SLONG)swUdmax*1020)>>10);
  756. acr_stCurIdPIIn.swUminPu = (SWORD)(((SLONG)swUdmin*1020)>>10);
  757. }
  758. else
  759. {
  760. UdDecCount++;
  761. acr_stCurIdPIIn.swUmaxPu = swUdmax; // Q14
  762. acr_stCurIdPIIn.swUminPu = swUdmin; // Q14
  763. }
  764. }
  765. else
  766. {
  767. acr_stCurIdPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  768. acr_stCurIdPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  769. }
  770. }
  771. else
  772. {}
  773. // if(switch_flg.SysRun_Flag == TRUE)
  774. {
  775. swUdmin = acr_stCurIqPIIn.swUminPu;
  776. swUdmax = acr_stCurIqPIIn.swUmaxPu;
  777. }
  778. acr_voCurPI(&acr_stCurIdPIIn, &acr_stCurIdPICoef, &acr_stCurIdPIOut);
  779. /*=======================================================================
  780. Iq current PI control
  781. =======================================================================*/
  782. mth_voLPFilter(scm_swIqRefPu, &scm_stIqRefforDesat);
  783. mth_voLPFilter(scm_swIqFdbLpfPu, &scm_stIqFbkforDesat);
  784. //-------------limit min vault
  785. if (cp_stFlg.RotateDirectionSelect == ForwardRotate)
  786. {
  787. if(acr_stUdqDcpOut.swUqPu<=0)
  788. acr_stUdqDcpOut.swUqPu=0;
  789. }
  790. else if (cp_stFlg.RotateDirectionSelect == BackwardRotate)
  791. {
  792. if(acr_stUdqDcpOut.swUqPu>=0)
  793. acr_stUdqDcpOut.swUqPu=0;
  794. }
  795. //------------------
  796. if (DCPswitch == 1)
  797. {
  798. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu; // Q14
  799. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu; // Q14
  800. }
  801. else if (DCPswitch == 0)
  802. {
  803. if(event_blCurrentAssFlag == TRUE)
  804. {
  805. if (cp_stFlg.RotateDirectionSelect == ForwardRotate)
  806. {
  807. if (((SLONG)ass_stCadAssCalOut.swVoltLimitPu - (SLONG)acr_stUdqDcpOut.swUqPu) > 0)
  808. {
  809. acr_stCurIqPIIn.swUmaxPu = ass_stCadAssCalOut.swVoltLimitPu - acr_stUdqDcpOut.swUqPu; // Q14
  810. }
  811. else
  812. {
  813. acr_stCurIqPIIn.swUmaxPu = 0;
  814. }
  815. if(ass_stCadAssCalOut.blPreStopFlag == TRUE)
  816. {
  817. acr_stCurIqPIIn.swUminPu = 0;
  818. }
  819. else
  820. {
  821. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu;
  822. }
  823. }
  824. else if (cp_stFlg.RotateDirectionSelect == BackwardRotate)
  825. {
  826. if (((SLONG)ass_stCadAssCalOut.swVoltLimitPu - (SLONG)acr_stUdqDcpOut.swUqPu) < 0)
  827. {
  828. acr_stCurIqPIIn.swUminPu = ass_stCadAssCalOut.swVoltLimitPu - acr_stUdqDcpOut.swUqPu; // Q14
  829. }
  830. else
  831. {
  832. acr_stCurIqPIIn.swUminPu = 0;
  833. }
  834. if(ass_stCadAssCalOut.blPreStopFlag == TRUE )
  835. {
  836. acr_stCurIqPIIn.swUmaxPu = 0;
  837. }
  838. else
  839. {
  840. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu;
  841. }
  842. }
  843. else
  844. {
  845. /* 方向错误 */
  846. }
  847. }
  848. else
  849. {
  850. if(switch_flg.SysRun_Flag == FALSE)
  851. {
  852. if(UqDecCount>=100) // each 100/8000s decrease to 1000/1024*U
  853. {
  854. UqDecCount = 0;
  855. acr_stCurIqPIIn.swUmaxPu = (SWORD)(((SLONG)swUqmax*1010)>>10);
  856. acr_stCurIqPIIn.swUminPu = (SWORD)(((SLONG)swUqmin*1010)>>10);
  857. }
  858. else
  859. {
  860. UqDecCount++;
  861. acr_stCurIqPIIn.swUmaxPu = swUqmax; // Q14
  862. acr_stCurIqPIIn.swUminPu = swUqmin; // Q14
  863. }
  864. }
  865. else
  866. {
  867. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  868. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  869. }
  870. }
  871. }
  872. else
  873. {}
  874. swUqmin = acr_stCurIqPIIn.swUminPu;
  875. swUqmax = acr_stCurIqPIIn.swUmaxPu;
  876. //-------------------------------------------------
  877. if(0 == scm_swIqRefPu)
  878. {
  879. uwIqStopCnt++;
  880. if(uwIqStopCnt >= 500)
  881. {
  882. uwIqStopCnt = 500;
  883. }
  884. }
  885. else
  886. {
  887. uwIqStopCnt = 0;
  888. }
  889. if((500 == uwIqStopCnt) && (scm_uwSpdFbkLpfAbsPu < 1500))
  890. {
  891. if((cp_stFlg.RotateDirectionSelect == BackwardRotate)
  892. && (scm_swIqFdbLpfPu > 0))
  893. {
  894. acr_stCurIqPIIn.swCurRefPu = 0; // Q14
  895. acr_stCurIqPIIn.swCurFdbPu = 0;
  896. acr_stCurIqPIOut.swURefPu=0;
  897. acr_stCurIqPIOut.slURefPu=0;
  898. scm_swUqRefPu=0;
  899. }
  900. else if((cp_stFlg.RotateDirectionSelect == ForwardRotate)
  901. && (scm_swIqFdbLpfPu < 0))
  902. {
  903. acr_stCurIqPIIn.swCurRefPu = 0; // Q14
  904. acr_stCurIqPIIn.swCurFdbPu = 0;
  905. acr_stCurIqPIOut.swURefPu=0;
  906. acr_stCurIqPIOut.slURefPu=0;
  907. scm_swUqRefPu=0;
  908. }
  909. else
  910. {
  911. acr_stCurIqPIIn.swCurRefPu = scm_swIqRefPu; // Q14
  912. acr_stCurIqPIIn.swCurFdbPu = scm_swIqFdbLpfPu;
  913. }
  914. }
  915. else
  916. {
  917. acr_stCurIqPIIn.swCurRefPu = scm_swIqRefPu; // Q14
  918. acr_stCurIqPIIn.swCurFdbPu = scm_swIqFdbLpfPu;
  919. }
  920. acr_voCurPI(&acr_stCurIqPIIn, &acr_stCurIqPICoef, &acr_stCurIqPIOut);
  921. // if ((DCPswitch == 1) && (scm_uwSpdFbkLpfAbsPu > 30922)) // Q15 2000rpm
  922. // {
  923. // acr_stCurIdPIOut.slURefPu = acr_stCurIdPIOut.slURefPu - ((SLONG)acr_stUdqDcpOut.swUdPu << 15);
  924. // acr_stCurIqPIOut.slURefPu = acr_stCurIqPIOut.slURefPu - ((SLONG)acr_stUdqDcpOut.swUqPu << 15);
  925. // acr_stCurIdPIOut.swURefPu = acr_stCurIdPIOut.swURefPu - acr_stUdqDcpOut.swUdPu;
  926. // acr_stCurIqPIOut.swURefPu = acr_stCurIqPIOut.swURefPu - acr_stUdqDcpOut.swUqPu;
  927. // DCPswitch = 0;
  928. // }
  929. // if ((DCPswitch == 0) && (scm_uwSpdFbkLpfAbsPu < 8192))
  930. // {
  931. // acr_stCurIdPIOut.slURefPu = acr_stCurIdPIOut.slURefPu + ((SLONG)acr_stUdqDcpOut.swUdPu << 15);
  932. // acr_stCurIqPIOut.slURefPu = acr_stCurIqPIOut.slURefPu + ((SLONG)acr_stUdqDcpOut.swUqPu << 15);
  933. // acr_stCurIdPIOut.swURefPu = acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu;
  934. // acr_stCurIqPIOut.swURefPu = acr_stCurIqPIOut.swURefPu + acr_stUdqDcpOut.swUqPu;
  935. // DCPswitch = 1;
  936. // }
  937. if (DCPswitch == 1)
  938. {
  939. scm_swUqRefPu = acr_stCurIqPIOut.swURefPu; // Q14
  940. scm_swUdRefPu = acr_stCurIdPIOut.swURefPu; // Q14
  941. }
  942. else if (DCPswitch == 0)
  943. {
  944. scm_swUqRefPu = acr_stCurIqPIOut.swURefPu + acr_stUdqDcpOut.swUqPu; // Q14
  945. scm_swUdRefPu = acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu; // Q14
  946. }
  947. else
  948. {}
  949. if(event_blCurrentAssFlag == TRUE)
  950. {
  951. if (cp_stFlg.RotateDirectionSelect == ForwardRotate)
  952. {
  953. if (scm_swUqRefPu > ass_stCadAssCalOut.swVoltLimitPu)
  954. {
  955. scm_swUqRefPu = ass_stCadAssCalOut.swVoltLimitPu; // Q14=Q14
  956. }
  957. }
  958. else if (cp_stFlg.RotateDirectionSelect == BackwardRotate)
  959. {
  960. if (scm_swUqRefPu < ass_stCadAssCalOut.swVoltLimitPu)
  961. {
  962. scm_swUqRefPu = ass_stCadAssCalOut.swVoltLimitPu; // Q14=Q14
  963. }
  964. }
  965. else
  966. {
  967. /* 方向错误 */
  968. }
  969. }
  970. else
  971. {}
  972. /*=======================================================================
  973. IPark transformation for current
  974. =======================================================================*/
  975. #if(EMCDEAL_EN!=0)
  976. if(EcmDeal.EmcModeFlag==FALSE)
  977. {
  978. EcmDeal.swUdRefPu=scm_swUdRefPu;
  979. EcmDeal.swUqRefPu=scm_swUqRefPu;
  980. }
  981. else
  982. {
  983. scm_swUdRefPu=EcmDeal.swUdRefPu;
  984. scm_swUqRefPu=EcmDeal.swUqRefPu;
  985. }
  986. #endif
  987. //-----------------2024
  988. // scm_swUdRefPu=0;
  989. // if (cp_stFlg.RotateDirectionSelect == ForwardRotate)
  990. // {
  991. // if(bikethrottle_stBikeThrottleOut.uwThrottlePercent>250)
  992. // {
  993. // scm_swUqRefPu=bikethrottle_stBikeThrottleOut.uwThrottlePercent*10-2000;
  994. // }
  995. // else
  996. // {
  997. // if(scm_swUqRefPu>0)
  998. // scm_swUqRefPu--;
  999. // else if(scm_swUqRefPu<0)
  1000. // scm_swUqRefPu=0;
  1001. //
  1002. //
  1003. // }
  1004. //
  1005. // }
  1006. // else if (cp_stFlg.RotateDirectionSelect == BackwardRotate)
  1007. // {
  1008. // if(bikethrottle_stBikeThrottleOut.uwThrottlePercent>250)
  1009. // {
  1010. // scm_swUqRefPu=-bikethrottle_stBikeThrottleOut.uwThrottlePercent*10+2000;
  1011. // }
  1012. // else
  1013. // {
  1014. // if(scm_swUqRefPu<0)
  1015. // scm_swUqRefPu++;
  1016. // else if(scm_swUqRefPu>0)
  1017. // scm_swUqRefPu=0;
  1018. //
  1019. //
  1020. // }
  1021. // }
  1022. //----------------------
  1023. crd_stIParkIn.swDPu = scm_swUdRefPu;
  1024. crd_stIParkIn.swQPu = scm_swUqRefPu;
  1025. crd_stIParkIn.uwThetaPu = scm_uwAngIParkPu;
  1026. crd_voIPark(&crd_stIParkIn, &crd_stVltIParkOut);
  1027. /*=======================================================================
  1028. Deadband compensation
  1029. =======================================================================*/
  1030. #if (0)
  1031. dbc_stDbCompIn.swIaPu = adc_stDownOut.swIaPu; // Q14
  1032. dbc_stDbCompIn.swIbPu = adc_stDownOut.swIbPu; // Q14
  1033. dbc_stDbCompIn.swIcPu = adc_stDownOut.swIcPu; // Q14
  1034. dbc_stDbCompIn.uwVdcPu = adc_stUpOut.uwVdcLpfPu; // Q14
  1035. dbc_stDbCompIn.swWsPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  1036. // dbc_stDbCompCoef.uwNegWinVoltDuty = mn_uwNegWinVoltDuty;
  1037. // dbc_stDbCompCoef.uwPosLostVoltDuty = mn_uwPosLostVoltDuty;
  1038. dbc_voDBComp(&dbc_stDbCompIn, &dbc_stDbCompCoef, &dbc_stDbCompOut);
  1039. #endif
  1040. scm_swUalphaRefPu = crd_stVltIParkOut.swAlphaPu + dbc_stDbCompOut.swUalphaCompPu; // Q14
  1041. scm_swUbetaRefPu = crd_stVltIParkOut.swBetaPu + dbc_stDbCompOut.swUbetaCompPu; // Q14
  1042. scm_swUalphaCompPu = dbc_stDbCompOut.swUalphaCompPu; // Q14
  1043. scm_swUbetaCompPu = dbc_stDbCompOut.swUbetaCompPu; // Q14
  1044. /*=======================================================================
  1045. PWM generate
  1046. =======================================================================*/
  1047. if (cp_stFlg.RunModelSelect == VFContorl)
  1048. {
  1049. SWORD swVFVolAmp = 0;
  1050. swVFVolAmp = ((SLONG)cp_stControlPara.swDragVolAp << 14) / VBASE;
  1051. if (cp_stFlg.RotateDirectionSelect == ForwardRotate)
  1052. {
  1053. crd_stIParkIn.swDPu = 0;
  1054. crd_stIParkIn.swQPu = swVFVolAmp;
  1055. }
  1056. else if (cp_stFlg.RotateDirectionSelect == BackwardRotate)
  1057. {
  1058. crd_stIParkIn.swDPu = 0;
  1059. crd_stIParkIn.swQPu = swVFVolAmp;
  1060. }
  1061. else
  1062. {}
  1063. crd_stIParkIn.uwThetaPu = scm_uwAngIParkPu; // scm_uwAngIParkPu;
  1064. crd_voIPark(&crd_stIParkIn, &crd_stVltIParkOut);
  1065. scm_swUalphaRefPu = crd_stVltIParkOut.swAlphaPu;
  1066. scm_swUbetaRefPu = crd_stVltIParkOut.swBetaPu;
  1067. }
  1068. pwm_stGenIn.swUalphaPu = scm_swUalphaRefPu; // Q14
  1069. pwm_stGenIn.swUbetaPu = scm_swUbetaRefPu; // Q14
  1070. pwm_stGenIn.uwVdcPu = adc_stUpOut.uwVdcLpfPu; // Q14
  1071. pwm_voGen(&pwm_stGenIn, &pwm_stGenCoef, &pwm_stGenOut);
  1072. // iPwm_SetCompareGroupValues16(0, pwm_stGenOut.uwNewTIM1COMPR);
  1073. // if (cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  1074. // {
  1075. // ULONG samplingTick[2];
  1076. // samplingTick[0] = pwm_stGenOut.uwFirstTrigCOMPR;
  1077. // samplingTick[1] = pwm_stGenOut.uwSecondTrigCOMPR;
  1078. // //iPwm_SyncMultiSamplingCountUp(0, &samplingTick[0], 2);
  1079. // }
  1080. Test_U_in.swAlphaPu = pwm_stGenOut.swUalphaPu - scm_swUalphaCompPu; // Q14
  1081. Test_U_in.swBetaPu = pwm_stGenOut.swUbetaPu - scm_swUbetaCompPu; // Q14
  1082. Test_U_in.uwThetaPu = scm_uwAngIParkPu; // Q15
  1083. crd_voPark(&Test_U_in, &Test_U_out);
  1084. //// pwm_stGenOut.uwNewTIM1COMPR[0] = 500;
  1085. //// pwm_stGenOut.uwNewTIM1COMPR[1] = 500;
  1086. //// pwm_stGenOut.uwNewTIM1COMPR[2] = 500;
  1087. //// pwm_stGenOut.uwNewTIM1COMPR[3] = 1700;
  1088. //// pwm_stGenOut.uwNewTIM1COMPR[4] = 1700;
  1089. //// pwm_stGenOut.uwNewTIM1COMPR[5] = 1700;
  1090. }
  1091. /*************************************************************************
  1092. Local Functions (N/A)
  1093. *************************************************************************/
  1094. /*************************************************************************
  1095. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  1096. All rights reserved.
  1097. *************************************************************************/
  1098. #ifdef _SPDCTRMODE_C_
  1099. #undef _SPDCTRMODE_C_
  1100. #endif
  1101. /*************************************************************************
  1102. End of this File (EOF)!
  1103. Do not put anything after this part!
  1104. *************************************************************************/