adc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "usart.h"
  28. #include "Temp.h"
  29. //#include "api.h"
  30. #include "board_config.h"
  31. #include "UserGpio_Config.h"
  32. #include "MosResCalib.h"
  33. #include "hwsetup.h"
  34. #include "FuncLayerAPI.h"
  35. extern uint16_t gAdcResult0[8];
  36. /************************************************************************
  37. Constant Table:
  38. *************************************************************************/
  39. /************************************************************************
  40. Exported Functions:
  41. *************************************************************************/
  42. /***************************************************************
  43. Function: adc_voCalibration;
  44. Description: Get phase A and B current zero point, other A/D sample value
  45. Call by: main() before InitADC;
  46. Input Variables: N/A
  47. Output/Return Variables: ADCTESTOUT
  48. Subroutine Call: N/A
  49. Reference: N/A
  50. ****************************************************************/
  51. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  52. {
  53. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  54. {
  55. if (!hw_blChrgOvrFlg)
  56. {
  57. hw_voCharge();
  58. }
  59. else
  60. {
  61. #if(SampleModelSelect == DOUBLERESISTANCE) // if(cp_stFlg.CurrentSampleModelSelect == DOUBLERESISTANCE)
  62. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  63. {
  64. out1->ulIdcAvgRegSum += IBUSAVGREG();// //hw_uwADC1[HW_ADC_IBUSAVG_CH];//
  65. out1->ulIaRegSum += adc_uwRdsonUReg;//iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  66. out1->ulIbRegSum += adc_uwRdsonVReg;//iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  67. out1->ulIcRegSum += adc_uwRdsonWReg;//iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  68. out1->uwADCCalibCt++;
  69. }
  70. else
  71. {
  72. // sysctrl_voPwmInit(); // mos up charge and adc calib over; pwm off
  73. hw_voPWMInit();
  74. cof->uwIdcAveOffset = out1->ulIdcAvgRegSum >> (ADC_CALIB_INDEX);
  75. cof->uwIaOffset = out1->ulIaRegSum >> (ADC_CALIB_INDEX);
  76. cof->uwIbOffset = out1->ulIbRegSum >> (ADC_CALIB_INDEX);
  77. cof->uwIcOffset = out1->ulIcRegSum >> (ADC_CALIB_INDEX);
  78. out1->ulIdcAvgRegSum = 0;
  79. out1->ulIaRegSum = 0;
  80. out1->ulIbRegSum = 0;
  81. out1->ulIcRegSum = 0;
  82. out1->uwADCCalibCt = 0;
  83. out1->blADCCalibFlg = TRUE;
  84. out2->uwADCCalibCt = 0;
  85. out2->blADCCalibFlg = TRUE;
  86. }
  87. #elif(SampleModelSelect == COMBINATION)
  88. pwm_stGenOut.uwRDSONTrig = 108;
  89. pwm_stGenOut.uwSigRTrig = HW_HHHPWM_PERIOD;
  90. pwm_stGenOut.blSampleCalibFlag = TRUE;
  91. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX)) //24求平均
  92. {
  93. out1->ulIdcRegSum += adc_uwADDMAPhase1;
  94. out1->ulIdcAvgRegSum += hw_uwADC1[0];
  95. out1->ulIaRegSum += adc_uwRdsonUReg;
  96. out1->ulIbRegSum += adc_uwRdsonVReg;
  97. out1->ulIcRegSum += adc_uwRdsonWReg;
  98. out1->uwADCCalibCt++;
  99. }
  100. else
  101. {
  102. hw_voPWMInit(); // mos up charge and adc calib over; pwm off
  103. cof->uwIaOffset = out1->ulIaRegSum >> (ADC_CALIB_INDEX);
  104. cof->uwIbOffset = out1->ulIbRegSum >> (ADC_CALIB_INDEX);
  105. cof->uwIcOffset = out1->ulIcRegSum >> (ADC_CALIB_INDEX);
  106. cof->uwIdcAveOffset = out1->ulIdcAvgRegSum >> (ADC_CALIB_INDEX);
  107. out1->ulIaRegSum = 0;
  108. out1->ulIbRegSum = 0;
  109. out1->ulIcRegSum = 0;
  110. out1->ulIdcAvgRegSum = 0;
  111. pwm_stGenOut.blSampleCalibFlag = FALSE;
  112. cof->uwIdcOffset = out1->ulIdcRegSum >> (ADC_CALIB_INDEX);
  113. out1->ulIdcRegSum = 0;
  114. out1->uwADCCalibCt = 0;
  115. out1->blADCCalibFlg = TRUE;
  116. out2->uwADCCalibCt = 0;
  117. out2->blADCCalibFlg = TRUE;
  118. }
  119. #endif
  120. // else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  121. // {
  122. // if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  123. // {
  124. // out1->ulIdcRegSum +=adc_uwADDMAPhase1 + adc_uwADDMAPhase2;// iAdc_GetResultPointer(2)[HW_ADC_IA_CH] + iAdc_GetResultPointer(2)[HW_ADC_IB_CH];;
  125. // out1->ulIdcAvgRegSum += hw_uwADC1[HW_ADC_IBUSAVG_CH];//iAdc_GetResultPointer(0)[HW_ADC_IBUSAVG_CH];
  126. // out1->uwADCCalibCt++;
  127. // }
  128. // else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  129. // {
  130. // out2->uwADCCalibCt++;
  131. // }
  132. // else
  133. // {
  134. // hw_voPWMInit();
  135. // cof->uwIdcOffset = out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1);
  136. // cof->uwIdcAveOffset = out1->ulIdcAvgRegSum >> (ADC_CALIB_INDEX);
  137. // out1->ulIdcRegSum = 0;
  138. // out1->ulIdcAvgRegSum = 0;
  139. // out1->uwADCCalibCt = 0;
  140. // out1->blADCCalibFlg = TRUE;
  141. // out2->uwADCCalibCt = 0;
  142. // out2->blADCCalibFlg = TRUE;
  143. // }
  144. // }
  145. }
  146. }
  147. }
  148. /***************************************************************
  149. Function: adc_voSample;
  150. Description: Get three-phase current value after zero point and gain process
  151. Call by: functions in TBC;
  152. Input Variables: ADCIABFIXCOF
  153. Output/Return Variables: ADCTESTOUT
  154. Subroutine Call:
  155. Reference: N/A
  156. ****************************************************************/
  157. void adc_voSampleDown(ADC_COF *cof, ADC_DOWN_OUT *out)
  158. {
  159. UWORD uwIpeakPu;
  160. #if(SampleModelSelect == DOUBLERESISTANCE) // if(cp_stFlg.CurrentSampleModelSelect == DOUBLERESISTANCE)
  161. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  162. out->uwIaReg = adc_uwRdsonUReg;//iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  163. out->uwIbReg = adc_uwRdsonVReg;//iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  164. out->uwIcReg = adc_uwRdsonWReg;//iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  165. // if(MosResInside.blCalibFlag==TRUE)
  166. // {
  167. // tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  168. // tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  169. // tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  170. // // tmp_swIphase3 = -tmp_swIphase1 - tmp_swIphase2; // Q14=Q24-Q10
  171. // }
  172. // else
  173. {
  174. //tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * MosCal_A.uwCurReg2Pu >> 10); // Q14=Q24-Q10
  175. #if ((IPM_POWER_SEL == IPM_POWER_250W_6G) ||(IPM_POWER_SEL ==IPM_POWER_350W_6G))
  176. tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  177. tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  178. // tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  179. tmp_swIphase3 = -tmp_swIphase1 - tmp_swIphase2; // Q14=Q24-Q10
  180. #else
  181. tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu>> 10); // Q14=Q24-Q10
  182. tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  183. tmp_swIphase1 = -tmp_swIphase3 - tmp_swIphase2;
  184. #endif
  185. // tmp_swIphase3 = -tmp_swIphase1 - tmp_swIphase2; // Q14=Q24-Q10
  186. }
  187. out->swIaPu = tmp_swIphase1;
  188. out->swIbPu = tmp_swIphase2;
  189. out->swIcPu = tmp_swIphase3;
  190. #elif(SampleModelSelect == COMBINATION)
  191. if(hw_blPWMOnFlg==TRUE)//(curSpeed_state.state != Stop)
  192. {
  193. out->uwIaReg = adc_uwRdsonUReg;
  194. out->uwIbReg = adc_uwRdsonVReg;
  195. out->uwIcReg = adc_uwRdsonWReg;
  196. out->swSampIaPu = -((SLONG)((SLONG)out->uwIaReg - (SLONG)cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  197. out->swSampIbPu = -((SLONG)((SLONG)out->uwIbReg - (SLONG)cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  198. // out->swSampIcPu = -((SLONG)((SLONG)out->uwIcReg - (SLONG)cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  199. out->swSampIcPu = -out->swSampIaPu -out->swSampIbPu;
  200. //cof->uwCalibcoef = 1024; //Q10 补偿
  201. out->swIaPu = ((SLONG)out->swSampIaPu * cof->uwCalibcoefIA) >> 10;
  202. out->swIbPu = ((SLONG)out->swSampIbPu * cof->uwCalibcoefIB) >> 10;
  203. out->swIcPu =-out->swIaPu-out->swIbPu ;//((SLONG)out->swSampIcPu * cof->uwCalibcoef) >> 10;
  204. // out->swIaPu = out->swSampIaPu;
  205. // out->swIbPu = out->swSampIbPu;
  206. // out->swIcPu = out->swSampIcPu;
  207. }
  208. else
  209. {
  210. out->swIaPu = 0;
  211. out->swIbPu = 0;
  212. out->swIcPu = 0;
  213. }
  214. // out->swIaPu = out->swSampIaPu;
  215. // out->swIbPu = out->swSampIbPu;
  216. // out->swIcPu = out->swSampIcPu;
  217. #endif
  218. // else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  219. // {
  220. // // // Wait Injected ADC over
  221. // // while(ADC_GetFlagStatus(ADC1,ADC_IT_JEOS) == RESET)96
  222. // // {}
  223. // // ADC_ClearFlag(ADC1,ADC_IT_JEOS);
  224. //
  225. // // Register value
  226. // out->uwFirstCurREG = adc_uwADDMAPhase1;//iAdc_GetResultPointer(2)[HW_ADC_IA_CH]; // Q12
  227. // out->uwSecondCurREG =adc_uwADDMAPhase2;// iAdc_GetResultPointer(2)[HW_ADC_IB_CH]; // Q12
  228. //
  229. // tmp_swIphase1 = (SWORD)out->uwFirstCurREG - cof->uwIdcOffset;
  230. // tmp_swIphase1 = ((SLONG)tmp_swIphase1 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  231. // tmp_swIphase2 = (SWORD)cof->uwIdcOffset - out->uwSecondCurREG;
  232. // tmp_swIphase2 = ((SLONG)tmp_swIphase2 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  233. // tmp_swIphase3 = (SWORD)out->uwSecondCurREG - out->uwFirstCurREG;
  234. // tmp_swIphase3 = ((SLONG)tmp_swIphase3 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  235. //
  236. // out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  237. // switch (pwm_stGenOut.uwNewSectorNum)
  238. // {
  239. // case 1:
  240. // out->swIbPu = tmp_swIphase1; // v
  241. // out->swIcPu = tmp_swIphase2; //-w
  242. // out->swIaPu = tmp_swIphase3; // u
  243. // break;
  244. // case 2:
  245. // out->swIaPu = tmp_swIphase1; // u
  246. // out->swIbPu = tmp_swIphase2; //-v
  247. // out->swIcPu = tmp_swIphase3;
  248. // break;
  249. // case 3:
  250. // out->swIaPu = tmp_swIphase1; // u
  251. // out->swIcPu = tmp_swIphase2; //-w
  252. // out->swIbPu = tmp_swIphase3;
  253. // break;
  254. // case 4:
  255. // out->swIcPu = tmp_swIphase1; // w
  256. // out->swIaPu = tmp_swIphase2; //-u
  257. // out->swIbPu = tmp_swIphase3;
  258. // break;
  259. // case 5:
  260. // out->swIbPu = tmp_swIphase1; // v
  261. // out->swIaPu = tmp_swIphase2; //-u
  262. // out->swIcPu = tmp_swIphase3;
  263. // break;
  264. // case 6:
  265. // out->swIcPu = tmp_swIphase1; // w
  266. // out->swIbPu = tmp_swIphase2; //-v
  267. // out->swIaPu = tmp_swIphase3;
  268. // break;
  269. // default:
  270. // out->swIaPu = 0;
  271. // out->swIbPu = 0;
  272. // out->swIcPu = 0;
  273. // break;
  274. // }
  275. // }
  276. /* Current absolute value & max value */
  277. if ((out->swIaPu) >= 0)
  278. {
  279. out->uwIaAbsPu = (UWORD)out->swIaPu;
  280. }
  281. else
  282. {
  283. out->uwIaAbsPu = (UWORD)(-(out->swIaPu));
  284. }
  285. if ((out->swIbPu) >= 0)
  286. {
  287. out->uwIbAbsPu = (UWORD)out->swIbPu;
  288. }
  289. else
  290. {
  291. out->uwIbAbsPu = (UWORD)(-(out->swIbPu));
  292. }
  293. if ((out->swIcPu) >= 0)
  294. {
  295. out->uwIcAbsPu = (UWORD)out->swIcPu;
  296. }
  297. else
  298. {
  299. out->uwIcAbsPu = (UWORD)(-(out->swIcPu));
  300. }
  301. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  302. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  303. out->uwIpeakPu = uwIpeakPu;
  304. }
  305. void adc_voSampleUp(ADC_COF *cof, ADC_UP_OUT *out)
  306. {
  307. static SLONG slIbusAvgSum = 0; /**< 只在本函数中用到的全局变量,但需注意清0 */
  308. static ULONG ulDelayTimes = 0;
  309. static UBYTE ubTempCalType = 0;
  310. /* Register value */
  311. out->uwIbusAvgReg = IBUSAVGREG();// DL_ADC12_getMemResult(ADC12_0_INST, DL_ADC12_MEM_IDX_4);//hw_uwADC1[HW_ADC_IBUSAVG_CH];
  312. out->MotorTempReg = MOTORTEMPREG();//DL_ADC12_getMemResult(ADC12_1_INST, DL_ADC12_MEM_IDX_1); //hw_uwADC1[HW_ADC_MOTTEMP_CH];// iAdc_GetResultPointer(0)[HW_ADC_MOTTEMP_CH];
  313. out->uwVdcReg = VDCREG();//DL_ADC12_getMemResult(ADC12_0_INST, DL_ADC12_MEM_IDX_5);//hw_uwADC1[HW_ADC_UDC_CH];//iAdc_GetResultPointer(0)[HW_ADC_UDC_CH];
  314. //out->TorqTempReg = iAdc_GetResultPointer(0)[HW_ADC_TORQ_CH];
  315. out->PCBTempReg =PCBTEMPREG();// DL_ADC12_getMemResult(ADC12_0_INST, DL_ADC12_MEM_IDX_1);//hw_uwADC1[HW_ADC_PCBTEMP_CH];//iAdc_GetResultPointer(0)[HW_ADC_PCBTEMP_CH];
  316. // out->uwU12VReg = hw_uwADC1[HW_ADC_U12V_CH];//iAdc_GetResultPointer(0)[HW_ADC_U12V_CH];
  317. // out->uwU6VReg = hw_uwADC1[HW_ADC_U6V_CH];//iAdc_GetResultPointer(0)[HW_ADC_U6V_CH];
  318. //out->uwThrottleReg = iAdc_GetResultPointer(0)[HW_ADC_THRO_CH];
  319. /* Vdc Pu value cal and lpf */
  320. out->uwVdcPu = (SLONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10; // Q14=Q24-Q10
  321. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  322. out->uwPoweAdcrLpfPu=((POWERKEYVOLREG()- out->uwPoweAdcrLpfPu) >> 1) + out->uwPoweAdcrLpfPu;
  323. /* IbusAvg Pu value and lpf */
  324. if(out->uwIbusAvgReg > cof->uwIdcAveOffset)
  325. {
  326. out->uwIbusAvgPu = ((SLONG)out->uwIbusAvgReg - (SLONG)cof->uwIdcAveOffset) * (SLONG)cof->uwCurIdcAvgReg2Pu >> 10; // Q14=Q24-Q10
  327. }
  328. else
  329. {
  330. out->uwIbusAvgPu =0;
  331. }
  332. slIbusAvgSum += (((SLONG)out->uwIbusAvgPu << 10) - slIbusAvgSum) >> 9;
  333. out->uwIbusAvgLpfPu = (UWORD)(slIbusAvgSum>>10);
  334. /* Voltage Pu cal */
  335. out->uwU6VPu = (SLONG)out->uwU6VReg * cof->uwU6VReg2Pu >> 10; // Q14=Q24-Q10;
  336. out->uwU5VPu = (SLONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10; // Q14=Q24-Q10;
  337. out->uwU12VPu = (SLONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10; // Q14=Q24-Q10;
  338. /* PCB温度采样:注意与车速信号共用一根线,需要在高电平时采样 */
  339. switch(ubTempCalType)
  340. {
  341. case 0: //PCB_TEMP
  342. out->PCBTempR = (ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER; // Q14=Q24-Q10;
  343. PcbTempCal(out->PCBTempR);
  344. out->PCBTemp = tmp_PcbTemp;
  345. #if(MOTOR_TEMP_DETECT == 1)
  346. ubTempCalType = 1;
  347. #else
  348. ubTempCalType = 0;
  349. out->MotorTemp = tmp_PcbTemp;
  350. #endif
  351. break;
  352. case 1: //MOTOR_TEMP
  353. #if (TORG4BBTORQU_ENABLE == 1)
  354. out->MotorTemp = TORG4BB_Get_Temp();
  355. #else
  356. if( out->MotorTempReg>1241)//1241-1V if(Get_MOTTEMP_PORT()!=0)//(iGpio_Read(HW_GPIO_MOTTEMP_PIN) != 0)
  357. {
  358. if(ulDelayTimes++ > 30000) /* prevent overflow */
  359. {
  360. ulDelayTimes = 30000;
  361. }
  362. if((ulDelayTimes > 50 && ulDelayTimes < 70) || (ulDelayTimes >= 20000)) /* remove signal rise and fall influence */
  363. {
  364. out->MotorTempR = ((ULONG)MOTOR_TEMP_AD_VCC * out->MotorTempReg * (MOTOR_TEMP_R1 + MOTOR_TEMP_R2) - MOTOR_TEMP_VCC * 4096 * MOTOR_TEMP_R2) / (MOTOR_TEMP_VCC * 4096 - 33 * out->MotorTempReg);
  365. MotorTempCal(out->MotorTempR);
  366. if(tmp_MotTemp > (out->MotorTemp+2))
  367. {
  368. out->MotorTemp = out->MotorTemp + 2;
  369. }
  370. else if((tmp_MotTemp+2)<out->MotorTemp)
  371. {
  372. out->MotorTemp = out->MotorTemp - 2;
  373. }
  374. else
  375. {
  376. out->MotorTemp = tmp_MotTemp;
  377. }
  378. }
  379. }
  380. else
  381. {
  382. ulDelayTimes = 0;
  383. }
  384. #endif
  385. ubTempCalType = 0;
  386. break;
  387. }
  388. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  389. #if(SampleModelSelect == COMBINATION)
  390. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  391. {
  392. switch (pwm_stGenOut.uwSingelRSampleArea)
  393. {
  394. case 0:
  395. out->swCalibIaPu = 0;
  396. out->swCalibIbPu = 0;
  397. out->swCalibIcPu = 0;
  398. break;
  399. case SampleA:
  400. out->swCalibIaPu = -((SLONG)((SWORD)adc_uwADDMAPhase1 - cof->uwIdcOffset) * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  401. out->swSampCapIaPu = -((SLONG)((SLONG)adc_uwIaReg- (SLONG)cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  402. break;
  403. case SampleB:
  404. out->swCalibIbPu = -((SLONG)((SWORD)adc_uwADDMAPhase1 - cof->uwIdcOffset) * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  405. out->swSampCapIbPu = -((SLONG)((SLONG)adc_uwIbReg - (SLONG)cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  406. break;
  407. case SampleC:
  408. out->swCalibIcPu = -((SLONG)((SWORD)adc_uwADDMAPhase1 - cof->uwIdcOffset) * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  409. break;
  410. }
  411. }
  412. #endif
  413. }
  414. /***************************************************************
  415. Function: adc_voSRCalibration;
  416. Description: //单电阻采样校准MOS内阻采样函数
  417. Call by:
  418. Input Variables:
  419. Output/Return Variables:
  420. Subroutine Call:
  421. Reference: N/A
  422. ****************************************************************/
  423. SWORD swSingleReg,swRdsonReg;
  424. UWORD uwCalGainflg;
  425. void adc_voSRCalibration(ADC_COF *cof , ADC_SUMCOF *Sum_out)
  426. {
  427. UWORD TempValue;
  428. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  429. {
  430. // Sum_out->GainTemp = (SLONG)((SLONG)swSingleReg << 10) / (SLONG)swRdsonReg;
  431. // if (Sum_out->GainTemp <= cof->uwCalibcoefMax && Sum_out->GainTemp >= cof->uwCalibcoefMin)
  432. {
  433. if (Sum_out->Start_Calc == 0)
  434. {
  435. Sum_out->Start_Calc = 1;
  436. Sum_out->RdsonGainCnt = 1;
  437. Sum_out->adc_RdsonADCGainSum = Sum_out->GainTemp;
  438. Sum_out->adc_RdsonADCGainMax = Sum_out->GainTemp;
  439. Sum_out->adc_RdsonADCGainMin = Sum_out->GainTemp;
  440. }
  441. else
  442. {
  443. Sum_out->adc_RdsonADCGainSum += Sum_out->GainTemp;
  444. if (Sum_out->GainTemp > Sum_out->adc_RdsonADCGainMax)
  445. {
  446. Sum_out->adc_RdsonADCGainMax = Sum_out->GainTemp;
  447. }
  448. else if (Sum_out->GainTemp < Sum_out->adc_RdsonADCGainMin)
  449. {
  450. Sum_out->adc_RdsonADCGainMin = Sum_out->GainTemp;
  451. }
  452. else
  453. {}
  454. if (Sum_out->RdsonGainCnt >= 9)
  455. {
  456. Sum_out->Start_Calc = 0;
  457. Sum_out->RdsonGainCnt = 0;
  458. Sum_out->adc_RdsonADCGainSum -= Sum_out->adc_RdsonADCGainMax;
  459. Sum_out->adc_RdsonADCGainSum -= Sum_out->adc_RdsonADCGainMin;
  460. TempValue = Sum_out->adc_RdsonADCGainSum >> 3;
  461. Sum_out->adc_RdsonADCGainSum2 -= Sum_out->adc_RdsonADCGainRecord[Sum_out->RdsonGainCnt2];
  462. Sum_out->adc_RdsonADCGainRecord[Sum_out->RdsonGainCnt2] = TempValue;
  463. Sum_out->adc_RdsonADCGainSum2 += Sum_out->adc_RdsonADCGainRecord[Sum_out->RdsonGainCnt2];
  464. Sum_out->RdsonGainCnt2++;
  465. if (Sum_out->RdsonGainCnt2 >= 2)
  466. {
  467. Sum_out->RdsonGainCnt2 = 0;
  468. Sum_out->uwCalibcoef = Sum_out->adc_RdsonADCGainSum2 >> 1;
  469. Sum_out->uwCalibcomplete=1;
  470. }
  471. }
  472. else
  473. {
  474. Sum_out->RdsonGainCnt++;
  475. }
  476. }
  477. }
  478. }
  479. }
  480. /***************************************************************
  481. Function: adc_voSampleCoef;
  482. Description: Get other A/D sample value
  483. Call by: functions in Mainloop;
  484. Input Variables: ADCIABFIXCOF
  485. Output/Return Variables: ADCTESTOUT
  486. Subroutine Call:
  487. Reference: N/A
  488. ****************************************************************/
  489. void adc_voSampleCoef(ADC_COF *cof)
  490. {
  491. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  492. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  493. //cof->uwCurIdcAvgReg2Pu = ((UQWORD)ADC_IDC_CUR_AVG_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  494. cof->uwCurIdcAvgReg2Pu = ((UQWORD)ADC_IDC_CUR_AVG_MAX_AP << 24) / (3824) / IBASE; // Q24
  495. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  496. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  497. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  498. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  499. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  500. cof->uwCalibcoefIA = 1024;
  501. cof->uwCalibcoefIB = 1024;
  502. cof->uwCalibcoefMax = 1800;
  503. cof->uwCalibcoefMin = 512;
  504. cof->uwCalibCoefK = 160; // q10
  505. }
  506. /***************************************************************
  507. Function: adc_voSampleInit;
  508. Description: ADC sample initialization
  509. Call by: mn_voSoftwareInit;
  510. Input Variables: N/A
  511. Output/Return Variables: N/A
  512. Subroutine Call:
  513. Reference: N/A
  514. ****************************************************************/
  515. void adc_voSampleInit(void)
  516. {
  517. adc_stDownOut.swIaPu = 0;
  518. adc_stDownOut.swIbPu = 0;
  519. adc_stDownOut.swIcPu = 0;
  520. adc_stDownOut.uwIaAbsPu = 0;
  521. adc_stDownOut.uwIbAbsPu = 0;
  522. adc_stDownOut.uwIcAbsPu = 0;
  523. adc_stDownOut.uwIpeakPu = 0;
  524. adc_stDownOut.uwIaReg = 0;
  525. adc_stDownOut.uwIbReg = 0;
  526. adc_stDownOut.uwIcReg = 0;
  527. adc_stDownOut.uwFirstCurREG = 0;
  528. adc_stDownOut.uwSecondCurREG = 0;
  529. adc_stDownOut.uwADCSector = 0;
  530. adc_stDownOut.uwIaAvgPu = 0;
  531. adc_stDownOut.uwIbAvgPu = 0;
  532. adc_stDownOut.uwIcAvgPu = 0;
  533. adc_stUpOut.uwVdcPu = 0;
  534. adc_stUpOut.uwVdcLpfPu = 0;
  535. adc_stUpOut.uwU6VPu = 0;
  536. adc_stUpOut.uwU5VPu = 0;
  537. adc_stUpOut.uwU12VPu = 0;
  538. adc_stUpOut.uwTrottlePu = 0;
  539. adc_stUpOut.PCBTemp = 0;
  540. adc_stUpOut.MotorTemp = 0;
  541. adc_stUpOut.uwVdcReg = 0;
  542. adc_stUpOut.uwU6VReg = 0;
  543. adc_stUpOut.uwU5VReg = 0;
  544. adc_stUpOut.uwU12VReg = 0;
  545. adc_stUpOut.uwThrottleReg = 0;
  546. adc_stUpOut.PCBTempReg = 0;
  547. adc_stUpOut.MotorTempReg = 0;
  548. adc_stUpOut.swCalibIaPu = 0;
  549. adc_stUpOut.swCalibIbPu = 0;
  550. adc_stUpOut.swCalibIcPu = 0;
  551. adc_stDownOut.ulUaRegSum = 0;
  552. adc_stDownOut.ulUbRegSum = 0;
  553. adc_stDownOut.ulUcRegSum = 0;
  554. adc_stDownOut.ulIdcRegSum = 0;
  555. adc_stDownOut.ulIaRegSum = 0;
  556. adc_stDownOut.ulIbRegSum = 0;
  557. adc_stDownOut.ulIcRegSum = 0;
  558. adc_stDownOut.uwADCCalibCt = 0;
  559. adc_stDownOut.blADCCalibFlg = FALSE;
  560. adc_stUpOut.uwADCCalibCt = 0;
  561. adc_stUpOut.blADCCalibFlg = FALSE;
  562. adc_stUpOut.swIPMTempCe = 0;
  563. pwm_stGenOut.uwSigRTrig = HW_HHHPWM_PERIOD;
  564. }
  565. /*************************************************************************
  566. Local Functions (N/A)
  567. *************************************************************************/
  568. /************************************************************************
  569. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  570. All rights reserved.
  571. *************************************************************************/
  572. #ifdef _ADCDRV_C_
  573. #undef _ADCDRV_C_
  574. #endif
  575. /*************************************************************************
  576. End of this File (EOF)!
  577. Do not put anything after this part!
  578. *************************************************************************/