switchhall.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. /**
  2. * @file switchhall.c
  3. * @author
  4. * @brief
  5. * @version
  6. * @date 2023.11.8
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /************************************************************************
  12. Beginning of File, do not put anything above here except notes
  13. Compiler Directives:
  14. *************************************************************************/
  15. //#include "at32f421.h"//// #include "stm32f10x.h"
  16. #include "typedefine.h"
  17. #include "syspar.h"
  18. #include "hwsetup.h"
  19. #include "glbcof.h"
  20. #include "switchhall.h"
  21. #include "spdctrFSM.h"
  22. #include "spdctrmode.h"
  23. #include "UserGpio_Config.h"
  24. #include "board_config.h"
  25. #include "emcdeal.h"
  26. #include "user.h"
  27. /******************************
  28. *
  29. * Parameter
  30. *
  31. ******************************/
  32. SWITCHHALL_CAP switchhall_stCap = SWITCHHALL_CAP_DEFAULT;
  33. SWITCHHALL_OUT switchhall_stOut = SWITCHHALL_OUT_DEFAULT;
  34. /***************************************************************
  35. Function:
  36. Description:
  37. Call by:
  38. Input Variables:
  39. Output/Return Variables:
  40. Subroutine Call:
  41. Reference:
  42. ****************************************************************/
  43. void switchhall_voInit(void)
  44. {
  45. switchhall_stOut.swLowSpdLpfPu = 0;
  46. switchhall_stOut.swLowSpdPu = 0;
  47. switchhall_stOut.swSpdCWorCCW = 0;
  48. switchhall_stOut.slInitThetaPu = 0;
  49. switchhall_stOut.uwLowThetaPu = 0;
  50. // switchhall_stOut.uwSectorNum = 0;
  51. // switchhall_stOut.uwSectorNumPre = 0;
  52. switchhall_stOut.slLowThetaPu = 0;
  53. switchhall_stOut.swLowThetaOffsetPu = cof_sl300DegreePu; //-683 -7 degree
  54. switchhall_stCap.slCapValueDelta = HALL3_SPD_CAP_LEVEL1;
  55. switchhall_stCap.ulCapValue = 0;
  56. switchhall_stCap.ulCapValuePre = 0;
  57. switchhall_stCap.uwCaptureOverFlowCnt = 0;
  58. }
  59. /***************************************************************
  60. Function:
  61. Description:
  62. Call by:
  63. Input Variables:
  64. Output/Return Variables:
  65. Subroutine Call:
  66. Reference:
  67. ****************************************************************/
  68. static void switchhall_voSectorJudge(void)
  69. {
  70. UWORD uwsectorNum;
  71. UWORD Jcnt=0;
  72. UWORD uwHallSta;
  73. UWORD uwActtime;
  74. uwsectorNum=0;
  75. // uint32_t gpioA = DL_GPIO_getEnabledInterruptStatus(GPIOA,
  76. // HALL_HALLA_PIN | HALL_HALLB_PIN | HALL_HALLC_PIN);
  77. ////if((GPIOB->idt & GPIO_PINS_5) ==0)//(Hall_HB_PORT()== 1)//if(iGpio_Read(HW_GPIO_HALLB_PIN) == 1)
  78. // if ((gpioA & HALL_HALLA_PIN) == 0)
  79. // {
  80. // uwsectorNum |= 0x01;
  81. // }
  82. //
  83. //// if((GPIOB->idt &GPIO_PINS_0) ==0)//(Hall_HA_PORT() == 1) //if(iGpio_Read(HW_GPIO_HALLC_PIN) == 1)
  84. // if ((gpioA & HALL_HALLB_PIN) ==0 )
  85. // {
  86. // uwsectorNum |= 0x02;
  87. // }
  88. //// if((GPIOB->idt &GPIO_PINS_4) ==0)//(Hall_HC_PORT() == 1) // if(iGpio_Read(HW_GPIO_HALLA_PIN) == 1)
  89. // if ((gpioA & HALL_HALLC_PIN) == 0)
  90. // {
  91. // uwsectorNum |= 0x04;
  92. // }
  93. //
  94. // uint32_t gpioA = DL_GPIO_getEnabledInterruptStatus(GPIOA,
  95. // HALL_HALLA_PIN | HALL_HALLB_PIN | HALL_HALLC_PIN);
  96. /*
  97. * Bitwise AND the pending interrupt with the pin you want to check,
  98. * then check if it is equal to the pins. Clear the interrupt status.
  99. */
  100. if (Hall_HA_PORT() ==0)// if ((Hall_HA_PORT() & HALL_HALLA_PIN) ==0)// if ((gpioA & HALL_HALLA_PIN) == HALL_HALLA_PIN)
  101. {
  102. // HALLACnt++;
  103. uwsectorNum |= 0x02;
  104. // DL_GPIO_clearInterruptStatus(GPIOA, HALL_HALLA_PIN);
  105. }
  106. if (Hall_HB_PORT() ==0) // if ((Hall_HB_PORT() & HALL_HALLB_PIN) ==0)// if ((gpioA & HALL_HALLB_PIN) == HALL_HALLB_PIN)
  107. {
  108. uwsectorNum |= 0x01;
  109. // HALLBCnt++;
  110. // DL_GPIO_clearInterruptStatus(GPIOA, HALL_HALLB_PIN);
  111. }
  112. if (Hall_HC_PORT() ==0) //if ((Hall_HC_PORT() & HALL_HALLC_PIN) ==0)// if ((gpioA & HALL_HALLC_PIN) == HALL_HALLC_PIN)
  113. {
  114. uwsectorNum |= 0x04;
  115. // HALLCCnt++;
  116. // DL_GPIO_clearInterruptStatus(GPIOA, HALL_HALLC_PIN);
  117. }
  118. // if((GPIOB->idt & GPIO_PINS_5) !=0)//(Hall_HB_PORT()== 1)//if(iGpio_Read(HW_GPIO_HALLB_PIN) == 1)
  119. // {
  120. // uwsectorNum = 0;
  121. // }
  122. // else
  123. // {
  124. // uwsectorNum = 1;
  125. // }
  126. // if((GPIOB->idt &GPIO_PINS_0) !=0)//(Hall_HA_PORT() == 1) //if(iGpio_Read(HW_GPIO_HALLC_PIN) == 1)
  127. // {
  128. // uwsectorNum |= (0 << 1);
  129. // }
  130. // else
  131. // {
  132. // uwsectorNum |= (1 << 1);
  133. // }
  134. // if((GPIOB->idt &GPIO_PINS_4) !=0)//(Hall_HC_PORT() == 1) // if(iGpio_Read(HW_GPIO_HALLA_PIN) == 1)
  135. // {
  136. // uwsectorNum |= (0 << 2);
  137. // }
  138. // else
  139. // {
  140. // uwsectorNum |= (1 << 2);
  141. // }
  142. // uwHallSta=uwsectorNum;
  143. // for(Jcnt=0;Jcnt<=15;Jcnt++)
  144. // {
  145. //// if((GPIOB->idt & GPIO_PINS_5) ==0)//(Hall_HB_PORT()== 1)//if(iGpio_Read(HW_GPIO_HALLB_PIN) == 1)
  146. // {
  147. // uwsectorNum |= 0x01;
  148. // }
  149. //
  150. //// if((GPIOB->idt &GPIO_PINS_0) ==0)//(Hall_HA_PORT() == 1) //if(iGpio_Read(HW_GPIO_HALLC_PIN) == 1)
  151. // {
  152. // uwsectorNum |= 0x02;
  153. // }
  154. //// if((GPIOB->idt &GPIO_PINS_4) ==0)//(Hall_HC_PORT() == 1) // if(iGpio_Read(HW_GPIO_HALLA_PIN) == 1)
  155. // {
  156. // uwsectorNum |= 0x04;
  157. // }
  158. //
  159. // if(uwHallSta==uwsectorNum)
  160. // {
  161. // uwActtime++;
  162. // }
  163. // }
  164. // if(uwActtime>10)
  165. {
  166. switchhall_stOut.uwSectorNum = uwsectorNum;
  167. }
  168. }
  169. /***************************************************************
  170. Function:
  171. Description:
  172. Call by:
  173. Input Variables:
  174. Output/Return Variables:
  175. Subroutine Call:
  176. Reference:
  177. ****************************************************************/
  178. SLONG switchhall_pvt_slLowSpdLpfPu;
  179. SLONG switchhall_pvt_slHighSpdLpfPu;
  180. SLONG Speed_buffer[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  181. SQWORD Speed_fb_sum = 0;
  182. SLONG Speed_Value = 0;
  183. SLONG Speed_AvgValue = 0;
  184. SWORD Speed_sample_index = 0;
  185. SWORD tstDeltaCap;
  186. SWORD tstCap;
  187. SWORD tstFlag = 0;
  188. SLONG tmp_ValueCapDelta = 0;
  189. void switchhall_voTim3Int(void)
  190. {
  191. switchhall_stCap.ulCapValue= DL_Timer_getTimerCount(HALLTIMER_INST);
  192. DL_Timer_setTimerCount(HALLTIMER_INST,0);
  193. tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60011 + (SLONG)switchhall_stCap.ulCapValue;
  194. switchhall_stCap.uwCaptureOverFlowCnt = 0;
  195. #if(EMCDEAL_EN!=0)
  196. if(EcmDeal.EmcModeFlag==FALSE)
  197. #endif
  198. {
  199. /*Sector Judgement*/
  200. switchhall_voSectorJudge();
  201. Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  202. Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  203. Speed_buffer[Speed_sample_index] = Speed_Value;
  204. Speed_fb_sum += (SQWORD)Speed_Value;
  205. Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  206. Speed_sample_index++;
  207. if (Speed_sample_index >= 12)
  208. Speed_sample_index = 0;
  209. switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  210. switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  211. EcmDeal.slCapValueDelta=switchhall_stCap.slCapValueDelta;
  212. }
  213. //-------------------------------------
  214. /* Capture Value */
  215. // if ((tmr_interrupt_flag_get(TMR3, TMR_OVF_FLAG)) == SET)//((TIM_GetITStatus(TIM3, TIM_IT_Update)) == SET)
  216. // {
  217. // tstFlag = 1000;
  218. //// if(curSpeed_state.state == StartUp || curSpeed_state.state == Open2Clz || curSpeed_state.state == ClzLoop)
  219. //// {
  220. //// if (tmr_interrupt_flag_get(TMR3, TMR_C1_FLAG) == SET)// if (TIM_GetITStatus(TIM3, TIM_IT_CC1) == SET)
  221. // {
  222. // if(Hall_HC_PORT())// if(GPIO_ReadInputDataBit(GPIOC, GPIO_Pin_6))
  223. // {
  224. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_1,TMR_POLARITY_ACTIVE_LOW);// TIM_OC1PolarityConfig(TIM3,TIM_ICPolarity_Falling);
  225. // }
  226. // else
  227. // {
  228. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_1,TMR_POLARITY_ACTIVE_HIGH);// TIM_OC1PolarityConfig(TIM3,TIM_ICPolarity_Rising);
  229. // }
  230. //
  231. //
  232. // {
  233. //// switchhall_stCap.ulSTATE = tmr_channel_value_get(TMR3,TMR_SELECT_CHANNEL_1);
  234. //
  235. //// if (switchhall_stCap.ulSTATE > tmr_counter_value_get(TMR3))
  236. // {
  237. // switchhall_stCap.ulCapValue = switchhall_stCap.ulSTATE;
  238. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  239. // switchhall_stCap.uwCaptureOverFlowCnt = 1;
  240. //
  241. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  242. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  243. // Speed_buffer[Speed_sample_index] = Speed_Value;
  244. // Speed_fb_sum += (SQWORD)Speed_Value;
  245. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  246. // Speed_sample_index++;
  247. // if (Speed_sample_index >= 12)
  248. // Speed_sample_index = 0;
  249. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  250. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  251. //
  252. // }
  253. //// else
  254. // {
  255. // switchhall_stCap.uwCaptureOverFlowCnt ++;
  256. // switchhall_stCap.ulCapValue = switchhall_stCap.ulSTATE;
  257. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  258. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  259. //
  260. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  261. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  262. // Speed_buffer[Speed_sample_index] = Speed_Value;
  263. // Speed_fb_sum += (SQWORD)Speed_Value;
  264. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  265. // Speed_sample_index++;
  266. // if (Speed_sample_index >= 12)
  267. // Speed_sample_index = 0;
  268. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  269. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  270. // }
  271. // }
  272. //
  273. //// tmr_flag_clear(TMR3, TMR_C1_FLAG);// TIM_ClearFlag(TIM3, TIM_IT_CC1);
  274. // }
  275. //// else if (tmr_interrupt_flag_get(TMR3, TMR_C2_FLAG) == SET)
  276. // {
  277. // if(Hall_HB_PORT())
  278. // {
  279. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_2,TMR_POLARITY_ACTIVE_LOW);
  280. // }
  281. // else
  282. // {
  283. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_2,TMR_POLARITY_ACTIVE_HIGH);
  284. // }
  285. //
  286. //
  287. // {
  288. //// switchhall_stCap.ulSTATE=tmr_channel_value_get(TMR3,TMR_SELECT_CHANNEL_2);
  289. //
  290. //// if (switchhall_stCap.ulSTATE > tmr_counter_value_get(TMR3))
  291. // {
  292. // switchhall_stCap.ulCapValue = switchhall_stCap.ulSTATE;
  293. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  294. // switchhall_stCap.uwCaptureOverFlowCnt = 1;
  295. //
  296. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  297. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  298. // Speed_buffer[Speed_sample_index] = Speed_Value;
  299. // Speed_fb_sum += (SQWORD)Speed_Value;
  300. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  301. // Speed_sample_index++;
  302. // if (Speed_sample_index >= 12)
  303. // Speed_sample_index = 0;
  304. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  305. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  306. //
  307. // }
  308. //// else
  309. // {
  310. // switchhall_stCap.uwCaptureOverFlowCnt ++;
  311. // switchhall_stCap.ulCapValue = switchhall_stCap.ulSTATE;
  312. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  313. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  314. //
  315. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  316. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  317. // Speed_buffer[Speed_sample_index] = Speed_Value;
  318. // Speed_fb_sum += (SQWORD)Speed_Value;
  319. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  320. // Speed_sample_index++;
  321. // if (Speed_sample_index >= 12)
  322. // Speed_sample_index = 0;
  323. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  324. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  325. // }
  326. // }
  327. //
  328. //// tmr_flag_clear(TMR3, TMR_C2_FLAG);//TIM_ClearFlag(TIM3, TIM_IT_CC2);
  329. // }
  330. //// else if (tmr_interrupt_flag_get(TMR3, TMR_C3_FLAG) == SET)
  331. // {
  332. // if(Hall_HA_PORT())
  333. // {
  334. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_3,TMR_POLARITY_ACTIVE_LOW);// TIM_OC3PolarityConfig(TIM3,TIM_ICPolarity_Falling);
  335. // }
  336. // else
  337. // {
  338. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_3,TMR_POLARITY_ACTIVE_HIGH);// TIM_OC3PolarityConfig(TIM3,TIM_ICPolarity_Rising);
  339. // }
  340. //
  341. //
  342. //
  343. // {
  344. //// switchhall_stCap.ulSTATE = tmr_channel_value_get(TMR3,TMR_SELECT_CHANNEL_3);
  345. //
  346. //// if (switchhall_stCap.ulSTATE >tmr_counter_value_get(TMR3))
  347. // {
  348. // switchhall_stCap.ulCapValue = switchhall_stCap.ulSTATE;
  349. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  350. // switchhall_stCap.uwCaptureOverFlowCnt = 1;
  351. //
  352. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  353. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  354. // Speed_buffer[Speed_sample_index] = Speed_Value;
  355. // Speed_fb_sum += (SQWORD)Speed_Value;
  356. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  357. // Speed_sample_index++;
  358. // if (Speed_sample_index >= 12)
  359. // Speed_sample_index = 0;
  360. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  361. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  362. //
  363. // }
  364. //// else
  365. // {
  366. // switchhall_stCap.uwCaptureOverFlowCnt ++;
  367. // switchhall_stCap.ulCapValue = switchhall_stCap.ulSTATE;
  368. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  369. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  370. //
  371. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  372. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  373. // Speed_buffer[Speed_sample_index] = Speed_Value;
  374. // Speed_fb_sum += (SQWORD)Speed_Value;
  375. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  376. // Speed_sample_index++;
  377. // if (Speed_sample_index >= 12)
  378. // Speed_sample_index = 0;
  379. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  380. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  381. // }
  382. // }
  383. //
  384. //// tmr_flag_clear(TMR3, TMR_C3_FLAG);// TIM_ClearFlag(TIM3, TIM_IT_CC3);
  385. // }
  386. //// else
  387. // {
  388. // switchhall_stCap.ulSTATE=0;
  389. // switchhall_stCap.uwCaptureOverFlowCnt ++;
  390. //
  391. // if(switchhall_stCap.uwCaptureOverFlowCnt >= 5)
  392. // {
  393. // tmp_ValueCapDelta = (SLONG)(switchhall_stCap.uwCaptureOverFlowCnt+1) * 60000; //switchhall_stCap.slCapValueDelta
  394. // switchhall_stCap.slCapValueDelta = tmp_ValueCapDelta;
  395. // }
  396. // }
  397. //
  398. // if (switchhall_stCap.uwCaptureOverFlowCnt > 9) //1HZ
  399. // {
  400. // /* Linmit the max CapValueDelta */
  401. // switchhall_stCap.uwCaptureOverFlowCnt=10;
  402. // }
  403. //// }
  404. //// else
  405. //// {
  406. //// switchhall_stCap.uwCaptureOverFlowCnt = 0;
  407. //// }
  408. //// tmr_flag_clear(TMR3, TMR_OVF_FLAG);// TIM_ClearFlag(TIM3, TIM_IT_Update);
  409. //
  410. // }
  411. //// else if((tmr_interrupt_flag_get(TMR3, TMR_C1_FLAG)) == SET)
  412. // {
  413. // tstFlag = 2000;
  414. // if(Hall_HC_PORT())
  415. // {
  416. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_1,TMR_POLARITY_ACTIVE_LOW);// TIM_OC1PolarityConfig(TIM3,TIM_ICPolarity_Falling);
  417. // }
  418. // else
  419. // {
  420. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_1,TMR_POLARITY_ACTIVE_HIGH);// TIM_OC1PolarityConfig(TIM3,TIM_ICPolarity_Rising);
  421. // }
  422. //
  423. //
  424. // {
  425. //// switchhall_stCap.ulCapValue = tmr_channel_value_get(TMR3,TMR_SELECT_CHANNEL_1);
  426. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  427. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  428. //
  429. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  430. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  431. // Speed_buffer[Speed_sample_index] = Speed_Value;
  432. // Speed_fb_sum += (SQWORD)Speed_Value;
  433. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  434. // Speed_sample_index++;
  435. // if (Speed_sample_index >= 12)
  436. // Speed_sample_index = 0;
  437. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  438. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  439. // }
  440. //
  441. //// tmr_flag_clear(TMR3, TMR_C1_FLAG);// TIM_ClearFlag(TIM3, TIM_IT_CC1);
  442. // }
  443. //// else if((tmr_interrupt_flag_get(TMR3, TMR_C2_FLAG) ) == SET)
  444. // {
  445. // tstFlag = 3000;
  446. // if(Hall_HB_PORT())
  447. // {
  448. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_2,TMR_POLARITY_ACTIVE_LOW);
  449. // }
  450. // else
  451. // {
  452. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_2,TMR_POLARITY_ACTIVE_HIGH);
  453. // }
  454. //
  455. //
  456. // {
  457. //// switchhall_stCap.ulCapValue =tmr_channel_value_get(TMR3,TMR_SELECT_CHANNEL_2);
  458. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  459. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  460. //
  461. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  462. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  463. // Speed_buffer[Speed_sample_index] = Speed_Value;
  464. // Speed_fb_sum += (SQWORD)Speed_Value;
  465. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  466. // Speed_sample_index++;
  467. // if (Speed_sample_index >= 12)
  468. // Speed_sample_index = 0;
  469. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  470. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  471. // }
  472. //
  473. //// tmr_flag_clear(TMR3, TMR_C2_FLAG);
  474. // }
  475. //// else if ((tmr_interrupt_flag_get(TMR3, TMR_C3_FLAG)) == SET)
  476. // {
  477. //
  478. // tstFlag = 4000;
  479. // /* Low Speed*/
  480. // if(Hall_HA_PORT())
  481. // {
  482. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_3,TMR_POLARITY_ACTIVE_LOW);
  483. // }
  484. // else
  485. // {
  486. //// tmr_output_channel_polarity_set(TMR3,TMR_SELECT_CHANNEL_3,TMR_POLARITY_ACTIVE_HIGH);
  487. // }
  488. //
  489. //
  490. // {
  491. //// switchhall_stCap.ulCapValue = tmr_channel_value_get(TMR3,TMR_SELECT_CHANNEL_3);
  492. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  493. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  494. // // /* High Speed*/
  495. // // switchhall_stCap.ulHighCapValue = switchhall_stCap.ulCapValue;
  496. // // switchhall_stCap.slHighCapValueDelta = (SLONG)switchhall_stCap.ulHighCapValue - switchhall_stCap.ulHighCapValuePre;
  497. // // if(switchhall_stCap.slHighCapValueDelta < 0)
  498. // // {
  499. // // switchhall_stCap.slHighCapValueDelta += 60000;
  500. // // }
  501. // /* Move Average Filter */
  502. //
  503. // Speed_Value = tmp_ValueCapDelta; //switchhall_stCap.slCapValueDelta;
  504. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  505. // Speed_buffer[Speed_sample_index] = Speed_Value;
  506. // Speed_fb_sum += (SQWORD)Speed_Value;
  507. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  508. // Speed_sample_index++;
  509. // if (Speed_sample_index >= 12)
  510. // Speed_sample_index = 0;
  511. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  512. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  513. // }
  514. //// tmr_flag_clear(TMR3, TMR_C3_FLAG);
  515. // }
  516. //// else
  517. // {
  518. // tstFlag = 5000;
  519. //// tmp_ValueCapDelta = HALL3_SPD_CAP_LEVEL1; //switchhall_stCap.slCapValueDelta
  520. // }
  521. //
  522. //
  523. //// if(curSpeed_state.state ==StartUp || curSpeed_state.state == Open2Clz || curSpeed_state.state == ClzLoop)
  524. //// {
  525. //// if ((switchhall_stOut.swLowSpdLpfPu > 1950)||(switchhall_stOut.swLowSpdLpfPu < -1950))//500rpm
  526. //// {
  527. //// switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  528. //// }
  529. //// else
  530. // //{
  531. //// switchhall_stCap.slCapValueDelta = Speed_Value;
  532. //// }
  533. //
  534. //// }
  535. //// else
  536. //// {
  537. //// switchhall_stCap.slCapValueDelta = HALL3_SPD_CAL_COEF;
  538. ////
  539. //// }
  540. tstCap = switchhall_stCap.ulCapValue >> 4;
  541. tstDeltaCap = switchhall_stCap.slCapValueDelta >> 4;
  542. }
  543. /***************************************************************
  544. Function:
  545. Description:
  546. Call by:
  547. Input Variables:
  548. Output/Return Variables:
  549. Subroutine Call:
  550. Reference:
  551. ****************************************************************/
  552. //void switchhall_voCapIsr(UWORD source)
  553. //{
  554. // if(source == 0)
  555. // {
  556. // /* 鏇存柊涓柇澶勭悊 */
  557. // switchhall_stCap.uwCaptureOverFlowCnt ++;
  558. // /* 閫熷害鎻掑�硷細澶勭悊闀夸簨浠舵棤鑴夊啿鎯呭喌 */
  559. // if(switchhall_stCap.uwCaptureOverFlowCnt >= 5)
  560. // {
  561. // tmp_ValueCapDelta = (SLONG)(switchhall_stCap.uwCaptureOverFlowCnt+1) * 60000; //switchhall_stCap.slCapValueDelta
  562. // switchhall_stCap.slCapValueDelta = tmp_ValueCapDelta;
  563. // }
  564. // /* 闄愬埗鏈�澶у�� */
  565. // if (switchhall_stCap.uwCaptureOverFlowCnt > 9)
  566. // {
  567. // switchhall_stCap.uwCaptureOverFlowCnt=10;
  568. // }
  569. // }
  570. // else
  571. // {
  572. // /* 鎹曡幏涓柇澶勭悊 */
  573. // /* 鏇存敼鎹曡幏瑙﹀彂杈规部 */
  574. //// if(iGpio_Read(HW_GPIO_HALLA_PIN + source - 1) != 0)
  575. //// {
  576. //// iCap_SetEdgeType(HW_MOTOR_HALL_CAP, CAP_CH(source-1), ApiCap_FallingEdge);
  577. //// }
  578. //// else
  579. //// {
  580. //// iCap_SetEdgeType(HW_MOTOR_HALL_CAP, CAP_CH(source-1), ApiCap_RisingEdge);
  581. //// }
  582. // /* 璁$畻鎹曡幏宸�� */
  583. // switchhall_stCap.ulCapValue = iCap_GetCaptureValue(HW_MOTOR_HALL_CAP, CAP_CH(source-1));
  584. // tmp_ValueCapDelta = (SLONG)switchhall_stCap.uwCaptureOverFlowCnt * 60000 + (SLONG)switchhall_stCap.ulCapValue - (SLONG)switchhall_stCap.ulCapValuePre; //switchhall_stCap.slCapValueDelta
  585. // switchhall_stCap.uwCaptureOverFlowCnt = 0;
  586. // /* 婊戝姩骞冲潎婊ゆ尝 */
  587. // Speed_Value = tmp_ValueCapDelta;
  588. // Speed_fb_sum -= Speed_buffer[Speed_sample_index];
  589. // Speed_buffer[Speed_sample_index] = Speed_Value;
  590. // Speed_fb_sum += (SQWORD)Speed_Value;
  591. // Speed_AvgValue = (SLONG)((Speed_fb_sum * 341)>>12);
  592. // Speed_sample_index++;
  593. // if (Speed_sample_index >= 12)
  594. // Speed_sample_index = 0;
  595. // switchhall_stCap.slCapValueDelta = Speed_AvgValue;
  596. // switchhall_stCap.ulCapValuePre = switchhall_stCap.ulCapValue;
  597. // }
  598. //}
  599. /***************************************************************
  600. Function:
  601. Description:
  602. Call by:
  603. Input Variables:
  604. Output/Return Variables:
  605. Subroutine Call:
  606. Reference:
  607. ****************************************************************/
  608. void switchhall_voPosCalTbc(void)
  609. {
  610. SLONG Hall_Theta_Temp = 0;
  611. SLONG Hall_Speed_Temp = 0;
  612. /*Low Speed Theta Update*/
  613. switchhall_stOut.slLowThetaPu += (((SLONG)TBC_TM * switchhall_stOut.swLowSpdLpfPu) >> 10); // Q10+Q15-Q10=Q15
  614. //switchhall_stOut.slLowThetaPu += (((SLONG)TBC_TM * scm_stSpdFbkLpf.slY.sw.hi) >> 10); // Q10+Q15-Q10=Q15
  615. if (switchhall_stOut.slLowThetaPu >= (cof_sl360DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  616. {
  617. switchhall_stOut.slLowThetaPu -= cof_sl360DegreePu;
  618. }
  619. else if (switchhall_stOut.slLowThetaPu < 0 + switchhall_stOut.swLowThetaOffsetPu)
  620. {
  621. switchhall_stOut.slLowThetaPu += cof_sl360DegreePu;
  622. }
  623. /*High Speed Theta Update*/
  624. // switchhall_stOut.slHighThetaPu += (((SLONG)TBC_TM * switchhall_stOut.swHighSpdLpfPu) >> 10); // Q10+Q15-Q10=Q15
  625. // if (switchhall_stOut.slHighThetaPu >= cof_sl360DegreePu + switchhall_stOut.swLowThetaOffsetPu)
  626. // {
  627. // switchhall_stOut.slHighThetaPu -= cof_sl360DegreePu;
  628. // }
  629. // else if (switchhall_stOut.slHighThetaPu < switchhall_stOut.swLowThetaOffsetPu)
  630. // {
  631. // switchhall_stOut.slHighThetaPu += cof_sl360DegreePu;
  632. // }
  633. /*Sector Judgement*/
  634. #if(EMCDEAL_EN==0)
  635. switchhall_voSectorJudge();
  636. #endif
  637. /*!< Zero Correction 1*/
  638. // switch(switchhall_stOut.uwSectorNum)
  639. // {
  640. // case 1:
  641. // if(switchhall_stOut.uwSectorNumPre == 3)
  642. // {
  643. // switchhall_stOut.swSpdCWorCCW = 1;
  644. // switchhall_stOut.slLowThetaPu = cof_sl210DegreePu;
  645. // }
  646. // else if(switchhall_stOut.uwSectorNumPre == 5)
  647. // {
  648. // switchhall_stOut.swSpdCWorCCW =-1;
  649. // switchhall_stOut.slLowThetaPu = cof_sl270DegreePu;
  650. // }
  651. //
  652. // switchhall_stOut.slInitThetaPu = cof_sl240DegreePu;
  653. // if(switchhall_stOut.slLowThetaPu < cof_sl210DegreePu)
  654. // {
  655. // switchhall_stOut.slLowThetaPu = cof_sl210DegreePu;
  656. // }
  657. // else if(switchhall_stOut.slLowThetaPu > cof_sl270DegreePu)
  658. // {
  659. // switchhall_stOut.slLowThetaPu = cof_sl270DegreePu;
  660. // }
  661. // else
  662. // {
  663. // }
  664. // break;
  665. // case 2:
  666. // if(switchhall_stOut.uwSectorNumPre == 6)
  667. // {
  668. // switchhall_stOut.swSpdCWorCCW = 1;
  669. // switchhall_stOut.slLowThetaPu = cof_sl90DegreePu;
  670. // }
  671. // else if(switchhall_stOut.uwSectorNumPre == 3)
  672. // {
  673. // switchhall_stOut.swSpdCWorCCW =-1;
  674. // switchhall_stOut.slLowThetaPu = cof_sl150DegreePu;
  675. // }
  676. //
  677. // switchhall_stOut.slInitThetaPu = cof_sl120DegreePu;
  678. // if(switchhall_stOut.slLowThetaPu < cof_sl90DegreePu)
  679. // {
  680. // switchhall_stOut.slLowThetaPu = cof_sl90DegreePu;
  681. // }
  682. // else if(switchhall_stOut.slLowThetaPu > cof_sl150DegreePu)
  683. // {
  684. // switchhall_stOut.slLowThetaPu = cof_sl150DegreePu;
  685. // }
  686. // else
  687. // {
  688. // }
  689. // break;
  690. // case 3:
  691. // if(switchhall_stOut.uwSectorNumPre == 2)
  692. // {
  693. // switchhall_stOut.swSpdCWorCCW = 1;
  694. // switchhall_stOut.slLowThetaPu = cof_sl150DegreePu;
  695. // }
  696. // else if(switchhall_stOut.uwSectorNumPre == 1)
  697. // {
  698. // switchhall_stOut.swSpdCWorCCW =-1;
  699. // switchhall_stOut.slLowThetaPu = cof_sl210DegreePu;
  700. // }
  701. //
  702. // switchhall_stOut.slInitThetaPu = cof_sl180DegreePu;
  703. // if(switchhall_stOut.slLowThetaPu < cof_sl150DegreePu)
  704. // {
  705. // switchhall_stOut.slLowThetaPu = cof_sl150DegreePu;
  706. // }
  707. // else if(switchhall_stOut.slLowThetaPu > cof_sl210DegreePu)
  708. // {
  709. // switchhall_stOut.slLowThetaPu = cof_sl210DegreePu;
  710. // }
  711. // else
  712. // {
  713. // }
  714. // break;
  715. // case 4:
  716. // if(switchhall_stOut.uwSectorNumPre == 5)
  717. // {
  718. // switchhall_stOut.swSpdCWorCCW = 1;
  719. // switchhall_stOut.slLowThetaPu = cof_sl330DegreePu;
  720. // }
  721. // else if(switchhall_stOut.uwSectorNumPre == 6)
  722. // {
  723. // switchhall_stOut.swSpdCWorCCW =-1;
  724. // switchhall_stOut.slLowThetaPu = cof_sl30DegreePu;
  725. // }
  726. //
  727. // switchhall_stOut.slInitThetaPu = 0;
  728. // if((switchhall_stOut.slLowThetaPu > cof_sl30DegreePu)&&(switchhall_stOut.slLowThetaPu < cof_sl330DegreePu))
  729. // {
  730. // if(switchhall_stOut.swSpdCWorCCW == 1)
  731. // {
  732. // switchhall_stOut.slLowThetaPu = cof_sl30DegreePu;
  733. // }
  734. // else if(switchhall_stOut.swSpdCWorCCW == -1)
  735. // {
  736. // switchhall_stOut.slLowThetaPu = cof_sl330DegreePu;
  737. // }
  738. // }
  739. // break;
  740. // case 5:
  741. // if(switchhall_stOut.uwSectorNumPre == 1)
  742. // {
  743. // switchhall_stOut.swSpdCWorCCW = 1;
  744. // switchhall_stOut.slLowThetaPu = cof_sl270DegreePu;
  745. // }
  746. // else if(switchhall_stOut.uwSectorNumPre == 4)
  747. // {
  748. // switchhall_stOut.swSpdCWorCCW =-1;
  749. // switchhall_stOut.slLowThetaPu = cof_sl330DegreePu;
  750. // }
  751. //
  752. // switchhall_stOut.slInitThetaPu = cof_sl300DegreePu;
  753. // if(switchhall_stOut.slLowThetaPu < cof_sl270DegreePu)
  754. // {
  755. // switchhall_stOut.slLowThetaPu = cof_sl270DegreePu;
  756. // }
  757. // else if(switchhall_stOut.slLowThetaPu > cof_sl330DegreePu)
  758. // {
  759. // switchhall_stOut.slLowThetaPu = cof_sl330DegreePu;
  760. // }
  761. // else
  762. // {
  763. // }
  764. // break;
  765. // case 6:
  766. // if(switchhall_stOut.uwSectorNumPre == 4)
  767. // {
  768. // switchhall_stOut.swSpdCWorCCW = 1;
  769. // switchhall_stOut.slLowThetaPu = cof_sl30DegreePu;
  770. // }
  771. // else if(switchhall_stOut.uwSectorNumPre == 2)
  772. // {
  773. // switchhall_stOut.swSpdCWorCCW = -1;
  774. // switchhall_stOut.slLowThetaPu = cof_sl90DegreePu;
  775. // }
  776. //
  777. // switchhall_stOut.slInitThetaPu = cof_sl60DegreePu;
  778. // if(switchhall_stOut.slLowThetaPu < cof_sl30DegreePu)
  779. // {
  780. // switchhall_stOut.slLowThetaPu = cof_sl30DegreePu;
  781. // }
  782. // else if(switchhall_stOut.slLowThetaPu > cof_sl90DegreePu)
  783. // {
  784. // switchhall_stOut.slLowThetaPu = cof_sl90DegreePu;
  785. // }
  786. // else
  787. // {
  788. // }
  789. // break;
  790. // default:
  791. // switchhall_stOut.swSpdCWorCCW =0;
  792. // switchhall_stOut.swLowSpdPu = 0;
  793. // break;
  794. // }
  795. //
  796. //
  797. /*!< Zero Correction 2*/
  798. switch (switchhall_stOut.uwSectorNum)
  799. {
  800. case 1:
  801. if (switchhall_stOut.uwSectorNumPre == 3)
  802. {
  803. switchhall_stOut.swSpdCWorCCW = 1;
  804. switchhall_stOut.slLowThetaPu = cof_sl30DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  805. }
  806. else if (switchhall_stOut.uwSectorNumPre == 5)
  807. {
  808. switchhall_stOut.swSpdCWorCCW = -1;
  809. switchhall_stOut.slLowThetaPu = cof_sl90DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  810. }
  811. switchhall_stOut.slInitThetaPu = cof_sl60DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  812. if (switchhall_stOut.slLowThetaPu < (cof_sl30DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  813. {
  814. switchhall_stOut.slLowThetaPu = cof_sl30DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  815. }
  816. else if (switchhall_stOut.slLowThetaPu > (cof_sl90DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  817. {
  818. switchhall_stOut.slLowThetaPu = cof_sl90DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  819. }
  820. else
  821. {}
  822. break;
  823. case 2:
  824. if (switchhall_stOut.uwSectorNumPre == 6)
  825. {
  826. switchhall_stOut.swSpdCWorCCW = 1;
  827. switchhall_stOut.slLowThetaPu = cof_sl270DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  828. }
  829. else if (switchhall_stOut.uwSectorNumPre == 3)
  830. {
  831. switchhall_stOut.swSpdCWorCCW = -1;
  832. switchhall_stOut.slLowThetaPu = cof_sl330DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  833. }
  834. switchhall_stOut.slInitThetaPu = cof_sl300DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  835. if (switchhall_stOut.slLowThetaPu < (cof_sl270DegreePu+ switchhall_stOut.swLowThetaOffsetPu))
  836. {
  837. switchhall_stOut.slLowThetaPu = cof_sl270DegreePu + switchhall_stOut.swLowThetaOffsetPu ;
  838. }
  839. else if (switchhall_stOut.slLowThetaPu > (cof_sl330DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  840. {
  841. switchhall_stOut.slLowThetaPu = cof_sl330DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  842. }
  843. else
  844. {}
  845. break;
  846. case 3:
  847. if (switchhall_stOut.uwSectorNumPre == 2)
  848. {
  849. switchhall_stOut.swSpdCWorCCW = 1;
  850. switchhall_stOut.slLowThetaPu = cof_sl330DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  851. }
  852. else if (switchhall_stOut.uwSectorNumPre == 1)
  853. {
  854. switchhall_stOut.swSpdCWorCCW = -1;
  855. switchhall_stOut.slLowThetaPu = cof_sl30DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  856. }
  857. switchhall_stOut.slInitThetaPu = cof_sl360DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  858. if ((switchhall_stOut.slLowThetaPu > (cof_sl30DegreePu + switchhall_stOut.swLowThetaOffsetPu)) && (switchhall_stOut.slLowThetaPu < (cof_sl330DegreePu + switchhall_stOut.swLowThetaOffsetPu)))
  859. {
  860. if (switchhall_stOut.swSpdCWorCCW == 1)
  861. {
  862. switchhall_stOut.slLowThetaPu = cof_sl30DegreePu + switchhall_stOut.swLowThetaOffsetPu ;
  863. }
  864. else if (switchhall_stOut.swSpdCWorCCW == -1)
  865. {
  866. switchhall_stOut.slLowThetaPu = cof_sl330DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  867. }
  868. }
  869. break;
  870. case 4:
  871. if (switchhall_stOut.uwSectorNumPre == 5)
  872. {
  873. switchhall_stOut.swSpdCWorCCW = 1;
  874. switchhall_stOut.slLowThetaPu = cof_sl150DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  875. }
  876. else if (switchhall_stOut.uwSectorNumPre == 6)
  877. {
  878. switchhall_stOut.swSpdCWorCCW = -1;
  879. switchhall_stOut.slLowThetaPu = cof_sl210DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  880. }
  881. switchhall_stOut.slInitThetaPu = cof_sl180DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  882. if (switchhall_stOut.slLowThetaPu < (cof_sl150DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  883. {
  884. switchhall_stOut.slLowThetaPu = cof_sl150DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  885. }
  886. else if (switchhall_stOut.slLowThetaPu > (cof_sl210DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  887. {
  888. switchhall_stOut.slLowThetaPu = cof_sl210DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  889. }
  890. else
  891. {}
  892. break;
  893. case 5:
  894. if (switchhall_stOut.uwSectorNumPre == 1)
  895. {
  896. switchhall_stOut.swSpdCWorCCW = 1;
  897. switchhall_stOut.slLowThetaPu = cof_sl90DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  898. }
  899. else if (switchhall_stOut.uwSectorNumPre == 4)
  900. {
  901. switchhall_stOut.swSpdCWorCCW = -1;
  902. switchhall_stOut.slLowThetaPu = cof_sl150DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  903. }
  904. switchhall_stOut.slInitThetaPu = cof_sl120DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  905. if (switchhall_stOut.slLowThetaPu < (cof_sl90DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  906. {
  907. switchhall_stOut.slLowThetaPu = cof_sl90DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  908. }
  909. else if (switchhall_stOut.slLowThetaPu > (cof_sl150DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  910. {
  911. switchhall_stOut.slLowThetaPu = cof_sl150DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  912. }
  913. else
  914. {}
  915. break;
  916. case 6:
  917. if (switchhall_stOut.uwSectorNumPre == 4)
  918. {
  919. switchhall_stOut.swSpdCWorCCW = 1;
  920. switchhall_stOut.slLowThetaPu = cof_sl210DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  921. }
  922. else if (switchhall_stOut.uwSectorNumPre == 2)
  923. {
  924. switchhall_stOut.swSpdCWorCCW = -1;
  925. switchhall_stOut.slLowThetaPu = cof_sl270DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  926. }
  927. switchhall_stOut.slInitThetaPu = cof_sl240DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  928. if (switchhall_stOut.slLowThetaPu < (cof_sl210DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  929. {
  930. switchhall_stOut.slLowThetaPu = cof_sl210DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  931. }
  932. else if (switchhall_stOut.slLowThetaPu > (cof_sl270DegreePu + switchhall_stOut.swLowThetaOffsetPu))
  933. {
  934. switchhall_stOut.slLowThetaPu = cof_sl270DegreePu + switchhall_stOut.swLowThetaOffsetPu;
  935. }
  936. else
  937. {}
  938. break;
  939. default:
  940. // switchhall_stOut.swSpdCWorCCW = 0;
  941. // switchhall_stOut.swLowSpdPu = 0;
  942. break;
  943. }
  944. switchhall_stOut.uwSectorNumPre = switchhall_stOut.uwSectorNum;
  945. /* Theta Compensation */
  946. // if (switchhall_stOut.swSpdCWorCCW == -1)
  947. // {
  948. // switchhall_stOut.swLowThetaOffsetPu = switchhall_stOut.swLowThetaOffsetPu + HALL_THETEA_OFFSET_FANXIANG;
  949. // }
  950. //
  951. // /* Speed Calculation */
  952. // if (switchhall_stOut.swSpdCWorCCW == 1)
  953. // {
  954. // switchhall_stOut.swLowSpdPu = (SWORD)(HALL3_SPD_CAL_COEF / switchhall_stCap.slCapValueDelta);
  955. // }
  956. // else if (switchhall_stOut.swSpdCWorCCW == -1)
  957. // {
  958. // switchhall_stOut.swLowSpdPu = -(SWORD)(HALL3_SPD_CAL_COEF / switchhall_stCap.slCapValueDelta);
  959. // }
  960. // else
  961. // {
  962. // switchhall_stOut.swLowSpdPu = 0;
  963. // }
  964. if (switchhall_stCap.slCapValueDelta >= HALL3_SPD_CAP_LEVEL1) //lower than level1
  965. {
  966. // switchhall_stOut.swLowSpdPu = 0;
  967. // switchhall_stOut.uwLowThetaPu = switchhall_stOut.slInitThetaPu;
  968. // Hall_Theta_Temp = (UWORD)(switchhall_stOut.slInitThetaPu+switchhall_stOut.swLowThetaOffsetPu); // Q15
  969. Hall_Theta_Temp = switchhall_stOut.slInitThetaPu;
  970. // Hall_Theta_Temp = switchhall_stOut.slLowThetaPu;
  971. if (Hall_Theta_Temp >= cof_sl360DegreePu)
  972. {
  973. Hall_Theta_Temp -= cof_sl360DegreePu;
  974. }
  975. else if (Hall_Theta_Temp < 0)
  976. {
  977. Hall_Theta_Temp += cof_sl360DegreePu;
  978. }
  979. switchhall_stOut.uwLowThetaPu = (UWORD)Hall_Theta_Temp;
  980. if (switchhall_stOut.swSpdCWorCCW == 1)
  981. {
  982. switchhall_stOut.swLowSpdPu = (SWORD)(HALL3_SPD_CAL_COEF / switchhall_stCap.slCapValueDelta);
  983. switchhall_stOut.swHighSpdPu = (SWORD)(HALL1_SPD_CAL_COEF / switchhall_stCap.slHighCapValueDelta);
  984. // switchhall_stOut.swLowSpdPu = (SWORD)(HALL3_SPD_CAL_COEF / tmp_ValueCapDelta);
  985. }
  986. else if (switchhall_stOut.swSpdCWorCCW == -1)
  987. {
  988. switchhall_stOut.swLowSpdPu = -(SWORD)(HALL3_SPD_CAL_COEF / switchhall_stCap.slCapValueDelta);
  989. switchhall_stOut.swHighSpdPu = -(SWORD)(HALL1_SPD_CAL_COEF / switchhall_stCap.slHighCapValueDelta);
  990. // switchhall_stOut.swLowSpdPu = -(SWORD)(HALL3_SPD_CAL_COEF / tmp_ValueCapDelta);
  991. }
  992. else
  993. {
  994. // switchhall_stOut.swLowSpdPu = 0;
  995. }
  996. }
  997. else if (switchhall_stCap.slCapValueDelta >= HALL3_SPD_CAP_LEVEL2) // lower than level2
  998. {
  999. /* Use fixed angle(middle of sector) at low speed*/
  1000. if (switchhall_stCap.slCapValueDelta >= HALL3_SPD_CAP_STARTUP_LEVEL) // lower than Startup level
  1001. {
  1002. // switchhall_stOut.uwLowThetaPu = switchhall_stOut.slInitThetaPu;
  1003. //Hall_Theta_Temp = (UWORD)(switchhall_stOut.slInitThetaPu+switchhall_stOut.swLowThetaOffsetPu); // Q15
  1004. // Hall_Theta_Temp = switchhall_stOut.slInitThetaPu;
  1005. Hall_Theta_Temp = switchhall_stOut.slLowThetaPu;
  1006. if (Hall_Theta_Temp >= cof_sl360DegreePu)
  1007. {
  1008. Hall_Theta_Temp -= cof_sl360DegreePu;
  1009. }
  1010. else if (Hall_Theta_Temp < 0)
  1011. {
  1012. Hall_Theta_Temp += cof_sl360DegreePu;
  1013. }
  1014. switchhall_stOut.uwLowThetaPu = (UWORD)Hall_Theta_Temp;
  1015. }
  1016. else
  1017. {
  1018. /*Low Speed Theta */
  1019. //Hall_Theta_Temp = (UWORD)(switchhall_stOut.slLowThetaPu+switchhall_stOut.swLowThetaOffsetPu); // Q15
  1020. Hall_Theta_Temp = switchhall_stOut.slLowThetaPu;
  1021. if (Hall_Theta_Temp >= cof_sl360DegreePu)
  1022. {
  1023. Hall_Theta_Temp -= cof_sl360DegreePu;
  1024. }
  1025. else if (Hall_Theta_Temp < 0)
  1026. {
  1027. Hall_Theta_Temp += cof_sl360DegreePu;
  1028. }
  1029. switchhall_stOut.uwLowThetaPu = (UWORD)Hall_Theta_Temp;
  1030. /*High Speed Theta */
  1031. // if (switchhall_stOut.slHighThetaPu >= cof_sl360DegreePu)
  1032. // {
  1033. // switchhall_stOut.slHighThetaPu -= cof_sl360DegreePu;
  1034. // }
  1035. // else if (switchhall_stOut.slHighThetaPu < 0)
  1036. // {
  1037. // switchhall_stOut.slHighThetaPu += cof_sl360DegreePu;
  1038. // }
  1039. // switchhall_stOut.uwHighThetaPu = cof_sl360DegreePu;
  1040. }
  1041. Hall_Speed_Temp = (SWORD)(HALL3_SPD_CAL_COEF / switchhall_stCap.slCapValueDelta);
  1042. // Hall_Speed_Temp = (SWORD)(HALL3_SPD_CAL_COEF / tmp_ValueCapDelta);
  1043. if (switchhall_stOut.swSpdCWorCCW == 1)
  1044. {
  1045. if(switchhall_stOut.swLowSpdPu < 0)
  1046. {
  1047. switchhall_stOut.swLowSpdPu += (_IQ15(0.0007)); //1hz
  1048. }
  1049. else
  1050. {
  1051. switchhall_stOut.swLowSpdPu = Hall_Speed_Temp;
  1052. }
  1053. switchhall_stOut.swHighSpdPu = (SWORD)(HALL1_SPD_CAL_COEF / switchhall_stCap.slHighCapValueDelta);
  1054. }
  1055. else if (switchhall_stOut.swSpdCWorCCW == -1)
  1056. {
  1057. if(switchhall_stOut.swLowSpdPu > 0)
  1058. {
  1059. switchhall_stOut.swLowSpdPu -= (_IQ15(0.0007)); //1hz
  1060. }
  1061. else
  1062. {
  1063. switchhall_stOut.swLowSpdPu = -Hall_Speed_Temp;
  1064. }
  1065. switchhall_stOut.swHighSpdPu = -(SWORD)(HALL1_SPD_CAL_COEF / switchhall_stCap.slHighCapValueDelta);
  1066. }
  1067. else
  1068. {
  1069. // switchhall_stOut.swLowSpdPu = 0;
  1070. }
  1071. }
  1072. else
  1073. {
  1074. // High speed: use single hall
  1075. }
  1076. #if(EMCDEAL_EN!=0)
  1077. // switchhall_stOut.swLowSpdPu=EcmDeal.swLowSpdPu;
  1078. #endif
  1079. /* Low Speed LPF */
  1080. switchhall_pvt_slLowSpdLpfPu =
  1081. (SLONG)100 * (switchhall_stOut.swLowSpdPu - switchhall_stOut.swLowSpdLpfPu) + switchhall_pvt_slLowSpdLpfPu; //50Hz
  1082. // switchhall_pvt_slLowSpdLpfPu =
  1083. // (SLONG)1286 * (switchhall_stOut.swLowSpdPu - switchhall_stOut.swLowSpdLpfPu) + switchhall_pvt_slLowSpdLpfPu; //50Hz
  1084. switchhall_stOut.swLowSpdLpfPu = switchhall_pvt_slLowSpdLpfPu >> 15;
  1085. /* High Speed LPF */
  1086. // switchhall_pvt_slHighSpdLpfPu =
  1087. // (SLONG)0x00CB * (switchhall_stOut.swHighSpdPu - switchhall_stOut.swHighSpdLpfPu) + switchhall_pvt_slHighSpdLpfPu;
  1088. // switchhall_stOut.swHighSpdLpfPu = switchhall_pvt_slHighSpdLpfPu >> 15;
  1089. }
  1090. UWORD Hcnt;
  1091. void HALLTIMER_INST_IRQHandler(void) //void TMR16_GLOBAL_IRQHandler(void)
  1092. {
  1093. switch (DL_Timer_getPendingInterrupt(HALLTIMER_INST))
  1094. {
  1095. case DL_TIMER_IIDX_LOAD:
  1096. #if(EMCDEAL_EN!=0)
  1097. if( EcmDeal.EmcModeFlag==TRUE)
  1098. switchhall_stCap.slCapValueDelta= EcmDeal.slCapValueDelta;
  1099. else
  1100. #endif
  1101. {
  1102. switchhall_voSectorJudge();
  1103. Hcnt++;
  1104. switchhall_stCap.uwCaptureOverFlowCnt ++;
  1105. if(switchhall_stCap.uwCaptureOverFlowCnt >= 5)
  1106. {
  1107. tmp_ValueCapDelta = (SLONG)(switchhall_stCap.uwCaptureOverFlowCnt+1) * 60011; //switchhall_stCap.slCapValueDelta
  1108. switchhall_stCap.slCapValueDelta = tmp_ValueCapDelta;
  1109. }
  1110. if (switchhall_stCap.uwCaptureOverFlowCnt > 9) //1HZ
  1111. {
  1112. /* Linmit the max CapValueDelta */
  1113. switchhall_stCap.uwCaptureOverFlowCnt=10;
  1114. }
  1115. }
  1116. break;
  1117. default:
  1118. break;
  1119. }
  1120. }
  1121. /*************************************************************************
  1122. End of this File (EOF)!
  1123. Do not put anything after this part!
  1124. *************************************************************************/