adc.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "usart.h"
  28. #include "Temp.h"
  29. //#include "api.h"
  30. #include "board_config.h"
  31. #include "UserGpio_Config.h"
  32. #include "MosResCalib.h"
  33. #include "hwsetup.h"
  34. extern uint16_t gAdcResult0[8];
  35. /************************************************************************
  36. Constant Table:
  37. *************************************************************************/
  38. /************************************************************************
  39. Exported Functions:
  40. *************************************************************************/
  41. /***************************************************************
  42. Function: adc_voCalibration;
  43. Description: Get phase A and B current zero point, other A/D sample value
  44. Call by: main() before InitADC;
  45. Input Variables: N/A
  46. Output/Return Variables: ADCTESTOUT
  47. Subroutine Call: N/A
  48. Reference: N/A
  49. ****************************************************************/
  50. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  51. {
  52. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  53. {
  54. if (!hw_blChrgOvrFlg)
  55. {
  56. hw_voCharge();
  57. }
  58. else
  59. {
  60. #if(SampleModelSelect == DOUBLERESISTANCE) // if(cp_stFlg.CurrentSampleModelSelect == DOUBLERESISTANCE)
  61. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  62. {
  63. out1->ulIdcAvgRegSum += IBUSAVGREG();// //hw_uwADC1[HW_ADC_IBUSAVG_CH];//
  64. out1->ulIaRegSum += adc_uwRdsonUReg;//iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  65. out1->ulIbRegSum += adc_uwRdsonVReg;//iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  66. out1->ulIcRegSum += adc_uwRdsonWReg;//iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  67. out1->uwADCCalibCt++;
  68. }
  69. else
  70. {
  71. // sysctrl_voPwmInit(); // mos up charge and adc calib over; pwm off
  72. hw_voPWMInit();
  73. cof->uwIdcAveOffset = out1->ulIdcAvgRegSum >> (ADC_CALIB_INDEX);
  74. cof->uwIaOffset = out1->ulIaRegSum >> (ADC_CALIB_INDEX);
  75. cof->uwIbOffset = out1->ulIbRegSum >> (ADC_CALIB_INDEX);
  76. cof->uwIcOffset = out1->ulIcRegSum >> (ADC_CALIB_INDEX);
  77. out1->ulIdcAvgRegSum = 0;
  78. out1->ulIaRegSum = 0;
  79. out1->ulIbRegSum = 0;
  80. out1->ulIcRegSum = 0;
  81. out1->uwADCCalibCt = 0;
  82. out1->blADCCalibFlg = TRUE;
  83. out2->uwADCCalibCt = 0;
  84. out2->blADCCalibFlg = TRUE;
  85. }
  86. #elif(SampleModelSelect == COMBINATION)
  87. pwm_stGenOut.uwRDSONTrig = 108;
  88. pwm_stGenOut.uwSigRTrig = HW_HHHPWM_PERIOD;
  89. pwm_stGenOut.blSampleCalibFlag = TRUE;
  90. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX)) //24求平均
  91. {
  92. out1->ulIdcRegSum += adc_uwADDMAPhase1;
  93. out1->ulIdcAvgRegSum += hw_uwADC1[0];
  94. out1->ulIaRegSum += adc_uwRdsonUReg;
  95. out1->ulIbRegSum += adc_uwRdsonVReg;
  96. out1->ulIcRegSum += adc_uwRdsonWReg;
  97. out1->uwADCCalibCt++;
  98. }
  99. else
  100. {
  101. hw_voPWMInit(); // mos up charge and adc calib over; pwm off
  102. cof->uwIaOffset = out1->ulIaRegSum >> (ADC_CALIB_INDEX);
  103. cof->uwIbOffset = out1->ulIbRegSum >> (ADC_CALIB_INDEX);
  104. cof->uwIcOffset = out1->ulIcRegSum >> (ADC_CALIB_INDEX);
  105. cof->uwIdcAveOffset = out1->ulIdcAvgRegSum >> (ADC_CALIB_INDEX);
  106. out1->ulIaRegSum = 0;
  107. out1->ulIbRegSum = 0;
  108. out1->ulIcRegSum = 0;
  109. out1->ulIdcAvgRegSum = 0;
  110. pwm_stGenOut.blSampleCalibFlag = FALSE;
  111. cof->uwIdcOffset = out1->ulIdcRegSum >> (ADC_CALIB_INDEX);
  112. out1->ulIdcRegSum = 0;
  113. out1->uwADCCalibCt = 0;
  114. out1->blADCCalibFlg = TRUE;
  115. out2->uwADCCalibCt = 0;
  116. out2->blADCCalibFlg = TRUE;
  117. }
  118. #endif
  119. // else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  120. // {
  121. // if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  122. // {
  123. // out1->ulIdcRegSum +=adc_uwADDMAPhase1 + adc_uwADDMAPhase2;// iAdc_GetResultPointer(2)[HW_ADC_IA_CH] + iAdc_GetResultPointer(2)[HW_ADC_IB_CH];;
  124. // out1->ulIdcAvgRegSum += hw_uwADC1[HW_ADC_IBUSAVG_CH];//iAdc_GetResultPointer(0)[HW_ADC_IBUSAVG_CH];
  125. // out1->uwADCCalibCt++;
  126. // }
  127. // else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  128. // {
  129. // out2->uwADCCalibCt++;
  130. // }
  131. // else
  132. // {
  133. // hw_voPWMInit();
  134. // cof->uwIdcOffset = out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1);
  135. // cof->uwIdcAveOffset = out1->ulIdcAvgRegSum >> (ADC_CALIB_INDEX);
  136. // out1->ulIdcRegSum = 0;
  137. // out1->ulIdcAvgRegSum = 0;
  138. // out1->uwADCCalibCt = 0;
  139. // out1->blADCCalibFlg = TRUE;
  140. // out2->uwADCCalibCt = 0;
  141. // out2->blADCCalibFlg = TRUE;
  142. // }
  143. // }
  144. }
  145. }
  146. }
  147. /***************************************************************
  148. Function: adc_voSample;
  149. Description: Get three-phase current value after zero point and gain process
  150. Call by: functions in TBC;
  151. Input Variables: ADCIABFIXCOF
  152. Output/Return Variables: ADCTESTOUT
  153. Subroutine Call:
  154. Reference: N/A
  155. ****************************************************************/
  156. void adc_voSampleDown(ADC_COF *cof, ADC_DOWN_OUT *out)
  157. {
  158. UWORD uwIpeakPu;
  159. #if(SampleModelSelect == DOUBLERESISTANCE) // if(cp_stFlg.CurrentSampleModelSelect == DOUBLERESISTANCE)
  160. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  161. out->uwIaReg = adc_uwRdsonUReg;//iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  162. out->uwIbReg = adc_uwRdsonVReg;//iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  163. out->uwIcReg = adc_uwRdsonWReg;//iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  164. // if(MosResInside.blCalibFlag==TRUE)
  165. // {
  166. // tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  167. // tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  168. // tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  169. // // tmp_swIphase3 = -tmp_swIphase1 - tmp_swIphase2; // Q14=Q24-Q10
  170. // }
  171. // else
  172. {
  173. //tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * MosCal_A.uwCurReg2Pu >> 10); // Q14=Q24-Q10
  174. #if ((IPM_POWER_SEL == IPM_POWER_250W_6G) ||(IPM_POWER_SEL ==IPM_POWER_350W_6G))
  175. tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  176. tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  177. // tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  178. tmp_swIphase3 = -tmp_swIphase1 - tmp_swIphase2; // Q14=Q24-Q10
  179. #else
  180. tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu>> 10); // Q14=Q24-Q10
  181. tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  182. tmp_swIphase1 = -tmp_swIphase3 - tmp_swIphase2;
  183. #endif
  184. // tmp_swIphase3 = -tmp_swIphase1 - tmp_swIphase2; // Q14=Q24-Q10
  185. }
  186. out->swIaPu = tmp_swIphase1;
  187. out->swIbPu = tmp_swIphase2;
  188. out->swIcPu = tmp_swIphase3;
  189. #elif(SampleModelSelect == COMBINATION)
  190. if(hw_blPWMOnFlg==TRUE)//(curSpeed_state.state != Stop)
  191. {
  192. out->uwIaReg = adc_uwRdsonUReg;
  193. out->uwIbReg = adc_uwRdsonVReg;
  194. out->uwIcReg = adc_uwRdsonWReg;
  195. out->swSampIaPu = -((SLONG)((SLONG)out->uwIaReg - (SLONG)cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  196. out->swSampIbPu = -((SLONG)((SLONG)out->uwIbReg - (SLONG)cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  197. // out->swSampIcPu = -((SLONG)((SLONG)out->uwIcReg - (SLONG)cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  198. out->swSampIcPu = -out->swSampIaPu -out->swSampIbPu;
  199. //cof->uwCalibcoef = 1024; //Q10 补偿
  200. out->swIaPu = ((SLONG)out->swSampIaPu * cof->uwCalibcoefIA) >> 10;
  201. out->swIbPu = ((SLONG)out->swSampIbPu * cof->uwCalibcoefIB) >> 10;
  202. out->swIcPu =-out->swIaPu-out->swIbPu ;//((SLONG)out->swSampIcPu * cof->uwCalibcoef) >> 10;
  203. // out->swIaPu = out->swSampIaPu;
  204. // out->swIbPu = out->swSampIbPu;
  205. // out->swIcPu = out->swSampIcPu;
  206. }
  207. else
  208. {
  209. out->swIaPu = 0;
  210. out->swIbPu = 0;
  211. out->swIcPu = 0;
  212. }
  213. // out->swIaPu = out->swSampIaPu;
  214. // out->swIbPu = out->swSampIbPu;
  215. // out->swIcPu = out->swSampIcPu;
  216. #endif
  217. // else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  218. // {
  219. // // // Wait Injected ADC over
  220. // // while(ADC_GetFlagStatus(ADC1,ADC_IT_JEOS) == RESET)96
  221. // // {}
  222. // // ADC_ClearFlag(ADC1,ADC_IT_JEOS);
  223. //
  224. // // Register value
  225. // out->uwFirstCurREG = adc_uwADDMAPhase1;//iAdc_GetResultPointer(2)[HW_ADC_IA_CH]; // Q12
  226. // out->uwSecondCurREG =adc_uwADDMAPhase2;// iAdc_GetResultPointer(2)[HW_ADC_IB_CH]; // Q12
  227. //
  228. // tmp_swIphase1 = (SWORD)out->uwFirstCurREG - cof->uwIdcOffset;
  229. // tmp_swIphase1 = ((SLONG)tmp_swIphase1 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  230. // tmp_swIphase2 = (SWORD)cof->uwIdcOffset - out->uwSecondCurREG;
  231. // tmp_swIphase2 = ((SLONG)tmp_swIphase2 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  232. // tmp_swIphase3 = (SWORD)out->uwSecondCurREG - out->uwFirstCurREG;
  233. // tmp_swIphase3 = ((SLONG)tmp_swIphase3 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  234. //
  235. // out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  236. // switch (pwm_stGenOut.uwNewSectorNum)
  237. // {
  238. // case 1:
  239. // out->swIbPu = tmp_swIphase1; // v
  240. // out->swIcPu = tmp_swIphase2; //-w
  241. // out->swIaPu = tmp_swIphase3; // u
  242. // break;
  243. // case 2:
  244. // out->swIaPu = tmp_swIphase1; // u
  245. // out->swIbPu = tmp_swIphase2; //-v
  246. // out->swIcPu = tmp_swIphase3;
  247. // break;
  248. // case 3:
  249. // out->swIaPu = tmp_swIphase1; // u
  250. // out->swIcPu = tmp_swIphase2; //-w
  251. // out->swIbPu = tmp_swIphase3;
  252. // break;
  253. // case 4:
  254. // out->swIcPu = tmp_swIphase1; // w
  255. // out->swIaPu = tmp_swIphase2; //-u
  256. // out->swIbPu = tmp_swIphase3;
  257. // break;
  258. // case 5:
  259. // out->swIbPu = tmp_swIphase1; // v
  260. // out->swIaPu = tmp_swIphase2; //-u
  261. // out->swIcPu = tmp_swIphase3;
  262. // break;
  263. // case 6:
  264. // out->swIcPu = tmp_swIphase1; // w
  265. // out->swIbPu = tmp_swIphase2; //-v
  266. // out->swIaPu = tmp_swIphase3;
  267. // break;
  268. // default:
  269. // out->swIaPu = 0;
  270. // out->swIbPu = 0;
  271. // out->swIcPu = 0;
  272. // break;
  273. // }
  274. // }
  275. /* Current absolute value & max value */
  276. if ((out->swIaPu) >= 0)
  277. {
  278. out->uwIaAbsPu = (UWORD)out->swIaPu;
  279. }
  280. else
  281. {
  282. out->uwIaAbsPu = (UWORD)(-(out->swIaPu));
  283. }
  284. if ((out->swIbPu) >= 0)
  285. {
  286. out->uwIbAbsPu = (UWORD)out->swIbPu;
  287. }
  288. else
  289. {
  290. out->uwIbAbsPu = (UWORD)(-(out->swIbPu));
  291. }
  292. if ((out->swIcPu) >= 0)
  293. {
  294. out->uwIcAbsPu = (UWORD)out->swIcPu;
  295. }
  296. else
  297. {
  298. out->uwIcAbsPu = (UWORD)(-(out->swIcPu));
  299. }
  300. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  301. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  302. out->uwIpeakPu = uwIpeakPu;
  303. }
  304. void adc_voSampleUp(ADC_COF *cof, ADC_UP_OUT *out)
  305. {
  306. static SLONG slIbusAvgSum = 0; /**< 只在本函数中用到的全局变量,但需注意清0 */
  307. static ULONG ulDelayTimes = 0;
  308. static UBYTE ubTempCalType = 0;
  309. /* Register value */
  310. out->uwIbusAvgReg = IBUSAVGREG();// DL_ADC12_getMemResult(ADC12_0_INST, DL_ADC12_MEM_IDX_4);//hw_uwADC1[HW_ADC_IBUSAVG_CH];
  311. out->MotorTempReg = MOTORTEMPREG();//DL_ADC12_getMemResult(ADC12_1_INST, DL_ADC12_MEM_IDX_1); //hw_uwADC1[HW_ADC_MOTTEMP_CH];// iAdc_GetResultPointer(0)[HW_ADC_MOTTEMP_CH];
  312. out->uwVdcReg = VDCREG();//DL_ADC12_getMemResult(ADC12_0_INST, DL_ADC12_MEM_IDX_5);//hw_uwADC1[HW_ADC_UDC_CH];//iAdc_GetResultPointer(0)[HW_ADC_UDC_CH];
  313. //out->TorqTempReg = iAdc_GetResultPointer(0)[HW_ADC_TORQ_CH];
  314. out->PCBTempReg =PCBTEMPREG();// DL_ADC12_getMemResult(ADC12_0_INST, DL_ADC12_MEM_IDX_1);//hw_uwADC1[HW_ADC_PCBTEMP_CH];//iAdc_GetResultPointer(0)[HW_ADC_PCBTEMP_CH];
  315. // out->uwU12VReg = hw_uwADC1[HW_ADC_U12V_CH];//iAdc_GetResultPointer(0)[HW_ADC_U12V_CH];
  316. // out->uwU6VReg = hw_uwADC1[HW_ADC_U6V_CH];//iAdc_GetResultPointer(0)[HW_ADC_U6V_CH];
  317. //out->uwThrottleReg = iAdc_GetResultPointer(0)[HW_ADC_THRO_CH];
  318. /* Vdc Pu value cal and lpf */
  319. out->uwVdcPu = (SLONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10; // Q14=Q24-Q10
  320. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  321. /* IbusAvg Pu value and lpf */
  322. if(out->uwIbusAvgReg > cof->uwIdcAveOffset)
  323. {
  324. out->uwIbusAvgPu = ((SLONG)out->uwIbusAvgReg - (SLONG)cof->uwIdcAveOffset) * (SLONG)cof->uwCurIdcAvgReg2Pu >> 10; // Q14=Q24-Q10
  325. }
  326. else
  327. {
  328. out->uwIbusAvgPu =0;
  329. }
  330. slIbusAvgSum += (((SLONG)out->uwIbusAvgPu << 10) - slIbusAvgSum) >> 9;
  331. out->uwIbusAvgLpfPu = (UWORD)(slIbusAvgSum>>10);
  332. /* Voltage Pu cal */
  333. out->uwU6VPu = (SLONG)out->uwU6VReg * cof->uwU6VReg2Pu >> 10; // Q14=Q24-Q10;
  334. out->uwU5VPu = (SLONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10; // Q14=Q24-Q10;
  335. out->uwU12VPu = (SLONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10; // Q14=Q24-Q10;
  336. /* PCB温度采样:注意与车速信号共用一根线,需要在高电平时采样 */
  337. switch(ubTempCalType)
  338. {
  339. case 0: //PCB_TEMP
  340. out->PCBTempR = (ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER; // Q14=Q24-Q10;
  341. PcbTempCal(out->PCBTempR);
  342. out->PCBTemp = tmp_PcbTemp;
  343. #if(MOTOR_TEMP_DETECT == 1)
  344. ubTempCalType = 1;
  345. #else
  346. ubTempCalType = 0;
  347. out->MotorTemp = tmp_PcbTemp;
  348. #endif
  349. break;
  350. case 1: //MOTOR_TEMP
  351. if( out->MotorTempReg>1241)//1241-1V if(Get_MOTTEMP_PORT()!=0)//(iGpio_Read(HW_GPIO_MOTTEMP_PIN) != 0)
  352. {
  353. if(ulDelayTimes++ > 30000) /* prevent overflow */
  354. {
  355. ulDelayTimes = 30000;
  356. }
  357. if((ulDelayTimes > 50 && ulDelayTimes < 70) || (ulDelayTimes >= 20000)) /* remove signal rise and fall influence */
  358. {
  359. out->MotorTempR = ((ULONG)MOTOR_TEMP_AD_VCC * out->MotorTempReg * (MOTOR_TEMP_R1 + MOTOR_TEMP_R2) - MOTOR_TEMP_VCC * 4096 * MOTOR_TEMP_R2) / (MOTOR_TEMP_VCC * 4096 - 33 * out->MotorTempReg);
  360. MotorTempCal(out->MotorTempR);
  361. if(tmp_MotTemp > (out->MotorTemp+2))
  362. {
  363. out->MotorTemp = out->MotorTemp + 2;
  364. }
  365. else if((tmp_MotTemp+2)<out->MotorTemp)
  366. {
  367. out->MotorTemp = out->MotorTemp - 2;
  368. }
  369. else
  370. {
  371. out->MotorTemp = tmp_MotTemp;
  372. }
  373. }
  374. }
  375. else
  376. {
  377. ulDelayTimes = 0;
  378. }
  379. ubTempCalType = 0;
  380. break;
  381. }
  382. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  383. #if(SampleModelSelect == COMBINATION)
  384. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  385. {
  386. switch (pwm_stGenOut.uwSingelRSampleArea)
  387. {
  388. case 0:
  389. out->swCalibIaPu = 0;
  390. out->swCalibIbPu = 0;
  391. out->swCalibIcPu = 0;
  392. break;
  393. case SampleA:
  394. out->swCalibIaPu = -((SLONG)((SWORD)adc_uwADDMAPhase1 - cof->uwIdcOffset) * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  395. out->swSampCapIaPu = -((SLONG)((SLONG)adc_uwIaReg- (SLONG)cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  396. break;
  397. case SampleB:
  398. out->swCalibIbPu = -((SLONG)((SWORD)adc_uwADDMAPhase1 - cof->uwIdcOffset) * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  399. out->swSampCapIbPu = -((SLONG)((SLONG)adc_uwIbReg - (SLONG)cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  400. break;
  401. case SampleC:
  402. out->swCalibIcPu = -((SLONG)((SWORD)adc_uwADDMAPhase1 - cof->uwIdcOffset) * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  403. break;
  404. }
  405. }
  406. #endif
  407. }
  408. /***************************************************************
  409. Function: adc_voSRCalibration;
  410. Description: //单电阻采样校准MOS内阻采样函数
  411. Call by:
  412. Input Variables:
  413. Output/Return Variables:
  414. Subroutine Call:
  415. Reference: N/A
  416. ****************************************************************/
  417. SWORD swSingleReg,swRdsonReg;
  418. UWORD uwCalGainflg;
  419. void adc_voSRCalibration(ADC_COF *cof , ADC_SUMCOF *Sum_out)
  420. {
  421. UWORD TempValue;
  422. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  423. {
  424. // Sum_out->GainTemp = (SLONG)((SLONG)swSingleReg << 10) / (SLONG)swRdsonReg;
  425. // if (Sum_out->GainTemp <= cof->uwCalibcoefMax && Sum_out->GainTemp >= cof->uwCalibcoefMin)
  426. {
  427. if (Sum_out->Start_Calc == 0)
  428. {
  429. Sum_out->Start_Calc = 1;
  430. Sum_out->RdsonGainCnt = 1;
  431. Sum_out->adc_RdsonADCGainSum = Sum_out->GainTemp;
  432. Sum_out->adc_RdsonADCGainMax = Sum_out->GainTemp;
  433. Sum_out->adc_RdsonADCGainMin = Sum_out->GainTemp;
  434. }
  435. else
  436. {
  437. Sum_out->adc_RdsonADCGainSum += Sum_out->GainTemp;
  438. if (Sum_out->GainTemp > Sum_out->adc_RdsonADCGainMax)
  439. {
  440. Sum_out->adc_RdsonADCGainMax = Sum_out->GainTemp;
  441. }
  442. else if (Sum_out->GainTemp < Sum_out->adc_RdsonADCGainMin)
  443. {
  444. Sum_out->adc_RdsonADCGainMin = Sum_out->GainTemp;
  445. }
  446. else
  447. {}
  448. if (Sum_out->RdsonGainCnt >= 9)
  449. {
  450. Sum_out->Start_Calc = 0;
  451. Sum_out->RdsonGainCnt = 0;
  452. Sum_out->adc_RdsonADCGainSum -= Sum_out->adc_RdsonADCGainMax;
  453. Sum_out->adc_RdsonADCGainSum -= Sum_out->adc_RdsonADCGainMin;
  454. TempValue = Sum_out->adc_RdsonADCGainSum >> 3;
  455. Sum_out->adc_RdsonADCGainSum2 -= Sum_out->adc_RdsonADCGainRecord[Sum_out->RdsonGainCnt2];
  456. Sum_out->adc_RdsonADCGainRecord[Sum_out->RdsonGainCnt2] = TempValue;
  457. Sum_out->adc_RdsonADCGainSum2 += Sum_out->adc_RdsonADCGainRecord[Sum_out->RdsonGainCnt2];
  458. Sum_out->RdsonGainCnt2++;
  459. if (Sum_out->RdsonGainCnt2 >= 2)
  460. {
  461. Sum_out->RdsonGainCnt2 = 0;
  462. Sum_out->uwCalibcoef = Sum_out->adc_RdsonADCGainSum2 >> 1;
  463. Sum_out->uwCalibcomplete=1;
  464. }
  465. }
  466. else
  467. {
  468. Sum_out->RdsonGainCnt++;
  469. }
  470. }
  471. }
  472. }
  473. }
  474. /***************************************************************
  475. Function: adc_voSampleCoef;
  476. Description: Get other A/D sample value
  477. Call by: functions in Mainloop;
  478. Input Variables: ADCIABFIXCOF
  479. Output/Return Variables: ADCTESTOUT
  480. Subroutine Call:
  481. Reference: N/A
  482. ****************************************************************/
  483. void adc_voSampleCoef(ADC_COF *cof)
  484. {
  485. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  486. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  487. //cof->uwCurIdcAvgReg2Pu = ((UQWORD)ADC_IDC_CUR_AVG_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  488. cof->uwCurIdcAvgReg2Pu = ((UQWORD)ADC_IDC_CUR_AVG_MAX_AP << 24) / (3824) / IBASE; // Q24
  489. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  490. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  491. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  492. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  493. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  494. cof->uwCalibcoefIA = 1024;
  495. cof->uwCalibcoefIB = 1024;
  496. cof->uwCalibcoefMax = 1800;
  497. cof->uwCalibcoefMin = 512;
  498. cof->uwCalibCoefK = 160; // q10
  499. }
  500. /***************************************************************
  501. Function: adc_voSampleInit;
  502. Description: ADC sample initialization
  503. Call by: mn_voSoftwareInit;
  504. Input Variables: N/A
  505. Output/Return Variables: N/A
  506. Subroutine Call:
  507. Reference: N/A
  508. ****************************************************************/
  509. void adc_voSampleInit(void)
  510. {
  511. adc_stDownOut.swIaPu = 0;
  512. adc_stDownOut.swIbPu = 0;
  513. adc_stDownOut.swIcPu = 0;
  514. adc_stDownOut.uwIaAbsPu = 0;
  515. adc_stDownOut.uwIbAbsPu = 0;
  516. adc_stDownOut.uwIcAbsPu = 0;
  517. adc_stDownOut.uwIpeakPu = 0;
  518. adc_stDownOut.uwIaReg = 0;
  519. adc_stDownOut.uwIbReg = 0;
  520. adc_stDownOut.uwIcReg = 0;
  521. adc_stDownOut.uwFirstCurREG = 0;
  522. adc_stDownOut.uwSecondCurREG = 0;
  523. adc_stDownOut.uwADCSector = 0;
  524. adc_stDownOut.uwIaAvgPu = 0;
  525. adc_stDownOut.uwIbAvgPu = 0;
  526. adc_stDownOut.uwIcAvgPu = 0;
  527. adc_stUpOut.uwVdcPu = 0;
  528. adc_stUpOut.uwVdcLpfPu = 0;
  529. adc_stUpOut.uwU6VPu = 0;
  530. adc_stUpOut.uwU5VPu = 0;
  531. adc_stUpOut.uwU12VPu = 0;
  532. adc_stUpOut.uwTrottlePu = 0;
  533. adc_stUpOut.PCBTemp = 0;
  534. adc_stUpOut.MotorTemp = 0;
  535. adc_stUpOut.uwVdcReg = 0;
  536. adc_stUpOut.uwU6VReg = 0;
  537. adc_stUpOut.uwU5VReg = 0;
  538. adc_stUpOut.uwU12VReg = 0;
  539. adc_stUpOut.uwThrottleReg = 0;
  540. adc_stUpOut.PCBTempReg = 0;
  541. adc_stUpOut.MotorTempReg = 0;
  542. adc_stUpOut.swCalibIaPu = 0;
  543. adc_stUpOut.swCalibIbPu = 0;
  544. adc_stUpOut.swCalibIcPu = 0;
  545. adc_stDownOut.ulUaRegSum = 0;
  546. adc_stDownOut.ulUbRegSum = 0;
  547. adc_stDownOut.ulUcRegSum = 0;
  548. adc_stDownOut.ulIdcRegSum = 0;
  549. adc_stDownOut.ulIaRegSum = 0;
  550. adc_stDownOut.ulIbRegSum = 0;
  551. adc_stDownOut.ulIcRegSum = 0;
  552. adc_stDownOut.uwADCCalibCt = 0;
  553. adc_stDownOut.blADCCalibFlg = FALSE;
  554. adc_stUpOut.uwADCCalibCt = 0;
  555. adc_stUpOut.blADCCalibFlg = FALSE;
  556. adc_stUpOut.swIPMTempCe = 0;
  557. pwm_stGenOut.uwSigRTrig = HW_HHHPWM_PERIOD;
  558. }
  559. /*************************************************************************
  560. Local Functions (N/A)
  561. *************************************************************************/
  562. /************************************************************************
  563. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  564. All rights reserved.
  565. *************************************************************************/
  566. #ifdef _ADCDRV_C_
  567. #undef _ADCDRV_C_
  568. #endif
  569. /*************************************************************************
  570. End of this File (EOF)!
  571. Do not put anything after this part!
  572. *************************************************************************/