hall_sensor.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. #include "hall_sensor.h"
  2. #include "fault_check.h"
  3. //全局变量定义
  4. const uint8_t HallSensorGroup_Encoder_Forward[8] = {1,3,6,2,5,1,4,1};//霍尔正转编码表,正转时信号为:1,3,2,6,4,5
  5. const uint8_t HallSensorGroup_Encoder_Backward[8] = {1,5,3,1,6,4,2,1};//霍尔反转编码表,反转时信号为:1,5,4,6,2,3
  6. //电角度值
  7. const uint16_t HallAngle_Data[8] =
  8. {
  9. 0,
  10. HALL_ORIGIN * 65536 / 360 + ANGLE_60D,
  11. HALL_ORIGIN * 65536 / 360 + ANGLE_120D + ANGLE_60D,
  12. HALL_ORIGIN * 65536 / 360 + ANGLE_120D,
  13. HALL_ORIGIN * 65536 / 360 - ANGLE_60D + 65535,
  14. HALL_ORIGIN * 65536 / 360 + 65535,
  15. HALL_ORIGIN * 65536 / 360 - ANGLE_120D + 65535,
  16. 0
  17. };
  18. //全局变量定义
  19. MC_HallSensorData_Struct_t MC_HallSensorData = {0, 0, 0, 0, TRUE, TRUE, 0};
  20. /**************************局部函数定义*************************/
  21. /**************************全局函数定义*************************/
  22. //读取霍尔传感器IO状态
  23. uint8_t Hall_ReadState(void)
  24. {
  25. uint8_t ReadValue;
  26. if(MC_HallSensorData.InverterExistFlag == TRUE) //存在反相器
  27. {
  28. ReadValue = (uint8_t)(HAL_GPIO_ReadPin(HALL_C_GPIO_Port, HALL_C_Pin)); //HALL C
  29. ReadValue |= (uint8_t)(HAL_GPIO_ReadPin(HALL_B_GPIO_Port, HALL_B_Pin)) << 1; //HALL B
  30. ReadValue |= (uint8_t)(HAL_GPIO_ReadPin(HALL_A_GPIO_Port, HALL_A_Pin)) << 2; //HALL A
  31. }
  32. else //不存在反相器,软件反相
  33. {
  34. ReadValue = (uint8_t)((HAL_GPIO_ReadPin(HALL_C_GPIO_Port, HALL_C_Pin) == GPIO_PIN_RESET)?1:0); //HALL C
  35. ReadValue |= (uint8_t)((HAL_GPIO_ReadPin(HALL_B_GPIO_Port, HALL_B_Pin) == GPIO_PIN_RESET)?1:0) << 1; //HALL B
  36. ReadValue |= (uint8_t)((HAL_GPIO_ReadPin(HALL_A_GPIO_Port, HALL_A_Pin) == GPIO_PIN_RESET)?1:0) << 2; //HALL A
  37. }
  38. return(ReadValue & 0x07);
  39. }
  40. //霍尔传感器IO初始化
  41. void HallSensor_GPIO_Init(void)
  42. {
  43. GPIO_InitTypeDef GPIO_InitStruct;
  44. __HAL_RCC_GPIOC_CLK_ENABLE();
  45. GPIO_InitStruct.Pin = HALL_C_Pin|HALL_A_Pin|HALL_B_Pin;
  46. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  47. GPIO_InitStruct.Pull = GPIO_PULLUP;
  48. HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
  49. }
  50. void HallSensorAngle_Init(void)
  51. {
  52. //初始化电角度值
  53. MC_HallSensorData.SVM_Angle = HallAngle_Data[Hall_ReadState()] + ANGLE_60D / 2;
  54. //PWM计数值清零
  55. MC_HallSensorData.PWM_NumCnt = 0;
  56. }
  57. void HallSensor_Process(void)
  58. {
  59. static MC_HallSensorStatus_Struct_t MC_HallSensorStatus;
  60. static TrueOrFalse_Flag_Struct_t IsFirstEnterFalg = TRUE;
  61. uint8_t HallStatus1, HallStatus2, HallStatus3;
  62. HallStatus1 = Hall_ReadState();
  63. HallStatus2 = Hall_ReadState();
  64. HallStatus3 = Hall_ReadState();
  65. //连续采集三次霍尔,三次状态都一致才更新霍尔状态,防us级干扰
  66. if( (HallStatus1==HallStatus2)&&(HallStatus2==HallStatus3) )
  67. {
  68. MC_HallSensorStatus.HallGropuStatus = HallStatus3;
  69. }
  70. if(IsFirstEnterFalg == TRUE)
  71. {
  72. MC_HallSensorStatus.HallGropuStatus_Old = MC_HallSensorStatus.HallGropuStatus;
  73. IsFirstEnterFalg = FALSE;
  74. }
  75. //启动和停止状态更新
  76. static uint8_t HallSensorTrigCnt = 0;
  77. static uint32_t StopDelayTimeCnt = 0;
  78. if(MC_HallSensorStatus.HallGropuStatus != MC_HallSensorStatus.HallGropuStatus_Old)
  79. {
  80. StopDelayTimeCnt = HAL_GetTick();
  81. if(HallSensorTrigCnt != 0)
  82. {
  83. HallSensorTrigCnt++;
  84. }
  85. else
  86. {
  87. MC_HallSensorData.IsStopFlag = FALSE;
  88. }
  89. }
  90. else
  91. {
  92. if((HAL_GetTick() - StopDelayTimeCnt) > 200)//超时200ms霍尔信号不变化,认为静止
  93. {
  94. MC_HallSensorData.IsStopFlag = TRUE;
  95. HallSensorTrigCnt = 0;
  96. MC_HallSensorData.motorspeed = 0;
  97. MC_HallSensorData.motorspeed_RCFlt = 0;
  98. }
  99. }
  100. //步进角和电角度计算
  101. static uint8_t HallSensorAngleCnt = 0;
  102. if(MC_HallSensorData.IsStopFlag == TRUE)
  103. {
  104. HallSensorAngleCnt = 0;//停止时清零,防止下次启动异常
  105. }
  106. if(MC_HallSensorStatus.HallGropuStatus == HallSensorGroup_Encoder_Forward[MC_HallSensorStatus.HallGropuStatus_Old])
  107. {
  108. //步进角计算
  109. if(MC_HallSensorData.PWM_NumCnt != 0)
  110. {
  111. MC_HallSensorData.Delta_Angle = ANGLE_60D / MC_HallSensorData.PWM_NumCnt;
  112. }
  113. //电角度计算
  114. else
  115. {
  116. MC_HallSensorData.Delta_Angle = 1;
  117. }
  118. HallSensorAngleCnt++;
  119. if(HallSensorAngleCnt>2)
  120. {
  121. MC_HallSensorData.motorspeed = 18750/MC_HallSensorData.PWM_NumCnt;
  122. }
  123. if(HallSensorAngleCnt < 15)
  124. {
  125. MC_HallSensorData.SVM_Angle = HallAngle_Data[MC_HallSensorStatus.HallGropuStatus] + (ANGLE_60D >> 1);
  126. MC_HallSensorData.Delta_Angle = 0;
  127. }
  128. else //15个霍尔变化后,在FOC中计算电角度
  129. {
  130. HallSensorAngleCnt = 15;
  131. MC_HallSensorData.SVM_Angle = HallAngle_Data[MC_HallSensorStatus.HallGropuStatus];
  132. }
  133. MC_HallSensorData.PWM_NumCnt = 0;
  134. MC_HallSensorData.Delta_AngleSum = 0;
  135. }
  136. else if(MC_HallSensorStatus.HallGropuStatus_Old == HallSensorGroup_Encoder_Forward[MC_HallSensorStatus.HallGropuStatus])
  137. {
  138. HallSensorAngleCnt = 0;
  139. MC_HallSensorData.Delta_Angle = 0;
  140. MC_HallSensorData.SVM_Angle = HallAngle_Data[MC_HallSensorStatus.HallGropuStatus] + (ANGLE_60D >> 1);
  141. MC_HallSensorData.PWM_NumCnt = 0xFFFF;
  142. }
  143. //霍尔传感器故障检测
  144. MC_Fault_HallSensor_Process(MC_HallSensorStatus, &MC_ErrorCode);
  145. MC_HallSensorStatus.HallGropuStatus_Old = MC_HallSensorStatus.HallGropuStatus;
  146. }
  147. //电机转速计算
  148. int16_t MotorSpeedCal(uint16_t SVM_Angle, TrueOrFalse_Flag_Struct_t IsStopFlag)
  149. {
  150. static uint8_t PreCnt = 0;
  151. static uint16_t SVM_Angle_Old = 0;
  152. int32_t AngleStep = 0;
  153. static int32_t FreqMotorFlt = 0, motrospeedFltSum=0;
  154. int16_t FreqMotor = 0;
  155. static int16_t Result = 0;
  156. PreCnt++;
  157. if(PreCnt >=15 )
  158. {
  159. PreCnt = 0;
  160. AngleStep = (int32_t)(MC_HallSensorData.SVM_Angle - SVM_Angle_Old);
  161. if(AngleStep < 0)
  162. {
  163. AngleStep = (int32_t)(MC_HallSensorData.SVM_Angle + 65535 - SVM_Angle_Old);
  164. }
  165. if(AngleStep > 20000)
  166. {
  167. AngleStep = 0;
  168. }
  169. SVM_Angle_Old = MC_HallSensorData.SVM_Angle;
  170. AngleStep = AngleStep * 1000;//f = [Angle(k-1)-Angle(k)]/Tc
  171. FreqMotorFlt += (AngleStep - FreqMotorFlt) >> 8;
  172. FreqMotor = FreqMotorFlt >> 16;
  173. Result = 60 * FreqMotor >> 3;// 8n=60*f/p
  174. motrospeedFltSum += ((MC_HallSensorData.motorspeed<<10) - motrospeedFltSum)>>5;
  175. MC_HallSensorData.motorspeed_RCFlt = motrospeedFltSum>>10;
  176. }
  177. if(IsStopFlag == TRUE)
  178. {
  179. Result = 0;
  180. }
  181. return Result;
  182. }