MC_FOC_Driver.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. #include "MC_FOC_Driver.h"
  2. #include "MC_type.h"
  3. #include "MC_Globals.h"
  4. #include "MC_PID_regulators.h"
  5. #include "MC_Clarke_park.h"
  6. #include "stm32f10x_svpwm_3shunt.h"
  7. #include "hall_sensor.h"
  8. #include "motor_control.h"
  9. #define FluxWeak_Control 0
  10. //全局变量定义
  11. int32_t IqFdbFlt = 0;
  12. int32_t IdFdbFlt = 0;
  13. int32_t VoltSquareFlt = 0;
  14. int32_t UqVoltFlt = 0;
  15. int32_t UdVoltFlt = 0;
  16. void FOC_Model(int16_t Ref, int16_t MotorSpeed, uint16_t SVM_Angle) //电流环处理函数,严格按照框图理解
  17. {
  18. int32_t UqVoltTmp;
  19. int16_t UdVoltTmp;
  20. static int16_t IqFdb = 0;
  21. static int16_t IdFdb = 0;
  22. #if FluxWeak_Control
  23. int32_t VoltSquare = 0; //弱磁控制预留
  24. int32_t VoltMax = 0;
  25. #endif
  26. static int32_t IdFluxLessRef = 0, IqFluxLessRef = 0;
  27. int32_t UqCal = 0;
  28. static int32_t FOC_IqLim = 0;
  29. Curr_Components Stat_Curr_a_b; // Stator currents Ia,Ib
  30. Curr_Components Stat_Curr_alfa_beta; // Ialpha & Ibeta, Clarke's transformations of Ia & Ib
  31. Volt_Components Stat_Volt_alfa_beta; // Valpha & Vbeta, RevPark transformations of Vq & Vd
  32. /**********STARTS THE VECTOR CONTROL *********************** */
  33. Stat_Curr_a_b = SVPWM_3ShuntGetPhaseCurrentValues(); //读取2相的电流值
  34. Stat_Curr_alfa_beta = Clarke(Stat_Curr_a_b); // 得到Ialpha和Ibeta,Clark变换
  35. Stat_Curr_q_d = Park(Stat_Curr_alfa_beta, SVM_Angle); // Stat_Curr_q_d为当前的Id和Iq值//SVM_Angle
  36. // 给定值为 Stat_Curr_q_d_ref_ref
  37. IqFdbFlt += (((int32_t)(Stat_Curr_q_d.qI_Component1 << 10)) - IqFdbFlt)>>10; // KFlt = 2ms
  38. IqFdb = IqFdbFlt >> 10;
  39. IdFdbFlt += (((int32_t)(Stat_Curr_q_d.qI_Component2 << 10)) - IdFdbFlt)>>10; // KFlt = 2ms
  40. IdFdb = IdFdbFlt >> 10;
  41. if((MC_HallSensorData.BackwardFlag == TRUE) && (MC_CalParam.AssistRunMode == MC_AssistRunMode_GAS))
  42. {
  43. if( ADC1_Result[ADC1_RANK_VIN] < 3000) //53853mV 17.951 3000
  44. {
  45. IqFluxLessRef = Ref;
  46. if(IdFluxLessRef < (-4))
  47. {
  48. IdFluxLessRef += 4;
  49. }
  50. else IdFluxLessRef = 0;
  51. }
  52. else if( ADC1_Result[ADC1_RANK_VIN] < 3210 ) //57622mV 3210
  53. {
  54. FOC_IqLim = 1050 - (ADC1_Result[ADC1_RANK_VIN] - 3000) * 5;
  55. IqFluxLessRef = Ref < FOC_IqLim ? Ref : FOC_IqLim;
  56. IdFluxLessRef -= 2;
  57. if(IdFluxLessRef < -420) IdFluxLessRef = -420;
  58. }
  59. else
  60. {
  61. IqFluxLessRef = 0;
  62. IdFluxLessRef = -420;
  63. }
  64. }
  65. else
  66. {
  67. if( ADC1_Result[ADC1_RANK_VIN] < 3100) //55648mV 17.951 3100
  68. {
  69. IqFluxLessRef = Ref;
  70. if(IdFluxLessRef < (-4))
  71. {
  72. IdFluxLessRef += 4;
  73. }
  74. else IdFluxLessRef = 0;
  75. }
  76. else if( ADC1_Result[ADC1_RANK_VIN] < 3310 ) //59417mV 3310
  77. {
  78. FOC_IqLim = 1050 - (ADC1_Result[ADC1_RANK_VIN] - 3100) * 5;
  79. IqFluxLessRef = Ref < FOC_IqLim ? Ref : FOC_IqLim;
  80. IdFluxLessRef -= 2;
  81. if(IdFluxLessRef < -420) IdFluxLessRef = -420;
  82. }
  83. else
  84. {
  85. IqFluxLessRef = 0;
  86. IdFluxLessRef = -420;
  87. }
  88. }
  89. UqVoltTmp = PID_Regulator(IqFluxLessRef,\
  90. IqFdb,\
  91. &PID_Torque_InitStructure); // 电流闭环输出q轴电压
  92. UqVoltFlt += ((UqVoltTmp << 9) - UqVoltFlt) >> 3;
  93. /*
  94. UqCal = DbSpdMotor*VMax*0.7/1020
  95. = DbSpdMotor*VMax/(1020/0.7)
  96. = DbSpdMotor*VMax/1020
  97. */
  98. #if 1 //加入前馈
  99. uint16_t Cal_K;
  100. Cal_K = (MC_MotorParam.Rate_Speed * 183) >> 7; //电机转速 * 1.43
  101. UqCal = ((int32_t)MotorSpeed * MAX_MODULE) / ((Cal_K < 1000) ? 1000 : Cal_K);
  102. UqVoltTmp = UqCal + (UqVoltFlt >> 9);
  103. #else //去掉前馈
  104. UqVoltTmp = UqVoltFlt >> 9;
  105. #endif
  106. UqVoltTmp = (UqVoltTmp > ((int32_t)MAX_MODULE)) ? MAX_MODULE : UqVoltTmp;
  107. Stat_Volt_q_d.qV_Component1 = UqVoltTmp;
  108. UdVoltTmp = PID_Regulator(IdFluxLessRef,\
  109. IdFdb,\
  110. &PID_Flux_InitStructure); // 电流闭环输出d轴电压
  111. UdVoltFlt += ((UdVoltTmp << 9) - UdVoltFlt) >> 3;
  112. Stat_Volt_q_d.qV_Component2 = UdVoltFlt >> 9;
  113. //circle limitation
  114. RevPark_Circle_Limitation(&Stat_Volt_q_d); // 电压极限圈限制? 会不会出现波动情况?
  115. /*Performs the Reverse Park transformation,
  116. i.e transforms stator voltages Vqs and Vds into Valpha and Vbeta on a
  117. stationary reference frame*/
  118. Stat_Volt_alfa_beta = Rev_Park(Stat_Volt_q_d);
  119. /*Valpha and Vbeta finally drive the power stage*/
  120. SVPWM_3ShuntCalcDutyCycles(Stat_Volt_alfa_beta); //实际的电流输出控制
  121. }
  122. void FOC_Enable(void)
  123. {
  124. FOC_Status = FOC_Status_RUN;
  125. }
  126. void FOC_Disable(void)
  127. {
  128. FOC_Status = FOC_Status_WAIT;
  129. Stat_Curr_q_d.qI_Component1 = 0;
  130. Stat_Curr_q_d.qI_Component2 = 0;
  131. Stat_Volt_q_d.qV_Component1 = 0;
  132. Stat_Volt_q_d.qV_Component2 = 0;
  133. }