cadence_sensor.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. #include "cadence_sensor.h"
  2. #include "adc.h"
  3. //局部变量定义
  4. const uint8_t ForwardDir_EncoderData[4] = {2,0,3,1};//判断正转用的编码顺序表,正转时信号为:2,0,1,3
  5. const uint8_t BackwardDir_EncoderData[4] = {1,3,0,2};//判断反转用的编码顺序表,反转时信号为:3,1,0,2
  6. //全局变量定义
  7. MC_CadenceResult_Struct_t MC_CadenceResult = {0, MC_Cadence_Stop, TRUE, 0};
  8. uint16_t MC_Cadence_Array[10] = {0};
  9. /**************************局部函数定义*************************/
  10. uint16_t torqueFilteredThroughCadence(uint16_t torque_temp, uint8_t modeFlag);
  11. /**************************全局函数定义*************************/
  12. uint8_t Cadence_ReadHallState(void)
  13. {
  14. uint8_t CadenceValue;
  15. GPIO_PinState hall_a, hall_b;
  16. hall_a = HAL_GPIO_ReadPin(CADENCE_2_GPIO_Port, CADENCE_2_Pin);
  17. CadenceValue = (uint8_t)hall_a;
  18. hall_b = HAL_GPIO_ReadPin(CADENCE_1_GPIO_Port, CADENCE_1_Pin);
  19. CadenceValue |= (uint8_t)hall_b << 1;
  20. return(CadenceValue & 0x03);
  21. }
  22. //踏频传感器IO初始化
  23. void CadenceSensor_GPIO_Init(void)
  24. {
  25. GPIO_InitTypeDef GPIO_InitStruct;
  26. __HAL_RCC_GPIOA_CLK_ENABLE();
  27. __HAL_RCC_GPIOB_CLK_ENABLE();
  28. GPIO_InitStruct.Pin = CADENCE_1_Pin;
  29. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  30. GPIO_InitStruct.Pull = GPIO_PULLUP;
  31. HAL_GPIO_Init(CADENCE_1_GPIO_Port, &GPIO_InitStruct);
  32. GPIO_InitStruct.Pin = CADENCE_2_Pin;
  33. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  34. GPIO_InitStruct.Pull = GPIO_PULLUP;
  35. HAL_GPIO_Init(CADENCE_2_GPIO_Port, &GPIO_InitStruct);
  36. }
  37. //踏频传感器检测处理
  38. void CadenceSensor_Process(MC_CadenceResult_Struct_t* p_MC_CadenceResult, uint16_t StopDelayTime, uint8_t StarCount, TrueOrFalse_Flag_Struct_t UpSlopeFlag)
  39. {
  40. static MC_CadenceSensorStatus_Struct_t MC_CadenceSensorStatus;
  41. static TrueOrFalse_Flag_Struct_t IsFirstEnterFalg = TRUE;
  42. //读取霍尔信号
  43. MC_CadenceSensorStatus.HallGropuStatus = Cadence_ReadHallState();
  44. if(IsFirstEnterFalg == TRUE)
  45. {
  46. MC_CadenceSensorStatus.HallGropuStatus_Old = MC_CadenceSensorStatus.HallGropuStatus;
  47. IsFirstEnterFalg = FALSE;
  48. }
  49. //判断踏频正反转,踏频信号触发计数
  50. static uint16_t BackwordDelayCnt1 = 0;
  51. static uint16_t BackwordDelayCnt2 = 0;
  52. if(MC_CadenceSensorStatus.HallGropuStatus != MC_CadenceSensorStatus.HallGropuStatus_Old)
  53. {
  54. if(MC_CadenceSensorStatus.HallGropuStatus_Old == ForwardDir_EncoderData[MC_CadenceSensorStatus.HallGropuStatus & 0x03])//上一次的编码,与正转的编码顺序一致,则为正转
  55. {
  56. //正转
  57. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Forward;
  58. BackwordDelayCnt1 = 0;
  59. BackwordDelayCnt2 = 0;
  60. //踏频信号计数
  61. p_MC_CadenceResult->TrigCount++;
  62. }
  63. else if(MC_CadenceSensorStatus.HallGropuStatus_Old == BackwardDir_EncoderData[MC_CadenceSensorStatus.HallGropuStatus & 0x03])//反转做延时判断
  64. {
  65. //反转
  66. BackwordDelayCnt1++;
  67. if(BackwordDelayCnt1 >= 4)//检测到连续4次反向脉冲则判断为反转,约4/120*360=12度
  68. {
  69. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Backward;
  70. BackwordDelayCnt1 = 0;
  71. }
  72. }
  73. else//蹋频波形异常情况下,延时判断为反转
  74. {
  75. //反转
  76. BackwordDelayCnt2++;
  77. if(BackwordDelayCnt2 > 10)
  78. {
  79. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Backward;
  80. BackwordDelayCnt2 = 0;
  81. }
  82. }
  83. }
  84. //踏频计算及启动和停止判断
  85. static uint32_t CadenceCalTimeCnt = 0; //用于计算蹋频值
  86. static int32_t Cadence_ActiveFlt = 0;
  87. uint16_t CadenceTemp;
  88. static uint8_t CadenceStarFlagCnt = 0; //用于判断启动
  89. static uint32_t CadenceStopJudgeTimeCnt = 0; //用于判断停止
  90. uint8_t CadenceStartThresholdValue = 2; //踏频启动阈值,霍尔信号数,6度/个
  91. if((MC_CadenceSensorStatus.HallGropuStatus & 0x01) != (MC_CadenceSensorStatus.HallGropuStatus_Old & 0x01))
  92. {
  93. //踏频计算及滤波处理
  94. CadenceTemp = 1000 / (HAL_GetTick() - CadenceCalTimeCnt);//转1圈有60个信号,根据两个信号之间的时间计算踏频值rpm
  95. CadenceCalTimeCnt = HAL_GetTick();
  96. Cadence_ActiveFlt += (((int32_t)CadenceTemp << 8) - Cadence_ActiveFlt) >> 4;
  97. p_MC_CadenceResult->Cadence_Data = (uint8_t)(Cadence_ActiveFlt >> 8);
  98. /*上坡时,启动阈值为1*/
  99. if(UpSlopeFlag == TRUE)
  100. {
  101. CadenceStartThresholdValue = 1;
  102. }
  103. else
  104. {
  105. CadenceStartThresholdValue = StarCount;
  106. }
  107. //起步判断
  108. if(p_MC_CadenceResult->Cadence_Dir == MC_Cadence_Forward)
  109. {
  110. CadenceStarFlagCnt++;
  111. if(CadenceStarFlagCnt >= CadenceStartThresholdValue)
  112. {
  113. p_MC_CadenceResult->IsStopFlag = FALSE;
  114. }
  115. }
  116. else
  117. {
  118. p_MC_CadenceResult->IsStopFlag = TRUE;
  119. }
  120. /*根据踏频的信号,对力矩进行滤波处理*/
  121. p_MC_CadenceResult->torqueByCadence = torqueFilteredThroughCadence(ADC_SensorData.TorqueSensor,1);
  122. //更新停机计时数值
  123. CadenceStopJudgeTimeCnt = HAL_GetTick();
  124. }
  125. //停机判断
  126. if(p_MC_CadenceResult->Cadence_Data < (1500 / StopDelayTime))
  127. {
  128. StopDelayTime *= 3;
  129. }
  130. if((HAL_GetTick() - CadenceStopJudgeTimeCnt) > StopDelayTime)
  131. {
  132. p_MC_CadenceResult->IsStopFlag = TRUE;
  133. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Stop;
  134. p_MC_CadenceResult->Cadence_Data = 0;
  135. CadenceTemp = 0;
  136. Cadence_ActiveFlt = 0;
  137. CadenceStarFlagCnt =0;
  138. /*清零相关变量*/
  139. p_MC_CadenceResult->torqueByCadence = torqueFilteredThroughCadence(ADC_SensorData.TorqueSensor,0);
  140. }
  141. MC_CadenceSensorStatus.HallGropuStatus_Old = MC_CadenceSensorStatus.HallGropuStatus;
  142. }
  143. uint16_t torqueFilteredThroughCadence(uint16_t torque_temp, uint8_t modeFlag)
  144. {
  145. #define T_FIFO_LENGTH 30 //每个信号6度,30为180度
  146. static uint16_t T_FIFO[T_FIFO_LENGTH]={0};
  147. static uint8_t T_Index=0;
  148. static uint32_t T_sum=0;
  149. static uint8_t filter_status_falg=0;
  150. uint16_t result_filtered=0;
  151. if( modeFlag != 0 )
  152. {
  153. /*根据踏频信号,采样最近180度内力矩平均值*/
  154. if(filter_status_falg != 0)
  155. {
  156. T_sum -= T_FIFO[T_Index];
  157. T_sum += torque_temp;
  158. T_FIFO[T_Index] = torque_temp;
  159. }
  160. T_Index++;
  161. if(T_Index >= T_FIFO_LENGTH)
  162. {
  163. T_Index = 0;
  164. if(filter_status_falg == 0)
  165. {
  166. filter_status_falg = 1;
  167. }
  168. else if(filter_status_falg == 1)
  169. {
  170. filter_status_falg = 2;
  171. }
  172. }
  173. if(filter_status_falg == 2)
  174. {
  175. result_filtered = T_sum / T_FIFO_LENGTH;
  176. }
  177. else if(filter_status_falg == 1)
  178. {
  179. /*启动后的前180度-360度,根据实际数据个数求平均值*/
  180. if(T_Index == 0)
  181. {
  182. result_filtered = torque_temp;
  183. }
  184. else
  185. {
  186. result_filtered = T_sum / T_Index;
  187. }
  188. }
  189. else
  190. {
  191. /*启动后的前180度,使用实时值*/
  192. result_filtered = torque_temp;
  193. }
  194. /*力矩实时值低于滤波值的五分之一,使用实时值*/
  195. if(torque_temp < (result_filtered/5) )
  196. {
  197. result_filtered = torque_temp;
  198. }
  199. /*踏频信号采样*/
  200. }
  201. else
  202. {
  203. /*清零变量*/
  204. for(uint8_t i=0;i<T_FIFO_LENGTH;i++)
  205. {
  206. T_FIFO[i] = 0;
  207. }
  208. T_Index = 0;
  209. T_sum = 0;
  210. filter_status_falg=0;
  211. }
  212. return result_filtered;
  213. }