cadence_sensor.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. #include "cadence_sensor.h"
  2. #include "adc.h"
  3. //局部变量定义
  4. const uint8_t ForwardDir_EncoderData[4] = {2,0,3,1};//判断正转用的编码顺序表,正转时信号为:2,0,1,3
  5. const uint8_t BackwardDir_EncoderData[4] = {1,3,0,2};//判断反转用的编码顺序表,反转时信号为:3,1,0,2
  6. //全局变量定义
  7. MC_CadenceResult_Struct_t MC_CadenceResult = {0, MC_Cadence_Stop, TRUE, 0};
  8. /**************************局部函数定义*************************/
  9. uint16_t torqueFilteredThroughCadence(uint16_t torque_temp, uint8_t modeFlag);
  10. /**************************全局函数定义*************************/
  11. uint8_t Cadence_ReadHallState(void)
  12. {
  13. uint8_t CadenceValue;
  14. GPIO_PinState hall_a, hall_b;
  15. hall_a = HAL_GPIO_ReadPin(CADENCE_2_GPIO_Port, CADENCE_2_Pin);
  16. CadenceValue = (uint8_t)hall_a;
  17. hall_b = HAL_GPIO_ReadPin(CADENCE_1_GPIO_Port, CADENCE_1_Pin);
  18. CadenceValue |= (uint8_t)hall_b << 1;
  19. return(CadenceValue & 0x03);
  20. }
  21. //踏频传感器IO初始化
  22. void CadenceSensor_GPIO_Init(void)
  23. {
  24. GPIO_InitTypeDef GPIO_InitStruct;
  25. __HAL_RCC_GPIOA_CLK_ENABLE();
  26. __HAL_RCC_GPIOB_CLK_ENABLE();
  27. GPIO_InitStruct.Pin = CADENCE_1_Pin;
  28. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  29. GPIO_InitStruct.Pull = GPIO_PULLUP;
  30. HAL_GPIO_Init(CADENCE_1_GPIO_Port, &GPIO_InitStruct);
  31. GPIO_InitStruct.Pin = CADENCE_2_Pin;
  32. GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  33. GPIO_InitStruct.Pull = GPIO_PULLUP;
  34. HAL_GPIO_Init(CADENCE_2_GPIO_Port, &GPIO_InitStruct);
  35. }
  36. //踏频传感器检测处理
  37. void CadenceSensor_Process(MC_CadenceResult_Struct_t* p_MC_CadenceResult, uint16_t StopDelayTime, uint8_t StarCount, TrueOrFalse_Flag_Struct_t UpSlopeFlag)
  38. {
  39. static MC_CadenceSensorStatus_Struct_t MC_CadenceSensorStatus;
  40. static TrueOrFalse_Flag_Struct_t IsFirstEnterFalg = TRUE;
  41. //读取霍尔信号
  42. MC_CadenceSensorStatus.HallGropuStatus = Cadence_ReadHallState();
  43. if(IsFirstEnterFalg == TRUE)
  44. {
  45. MC_CadenceSensorStatus.HallGropuStatus_Old = MC_CadenceSensorStatus.HallGropuStatus;
  46. IsFirstEnterFalg = FALSE;
  47. }
  48. //判断踏频正反转,踏频信号触发计数
  49. static uint16_t BackwordDelayCnt1 = 0;
  50. static uint16_t BackwordDelayCnt2 = 0;
  51. if(MC_CadenceSensorStatus.HallGropuStatus != MC_CadenceSensorStatus.HallGropuStatus_Old)
  52. {
  53. if(MC_CadenceSensorStatus.HallGropuStatus_Old == ForwardDir_EncoderData[MC_CadenceSensorStatus.HallGropuStatus & 0x03])//上一次的编码,与正转的编码顺序一致,则为正转
  54. {
  55. //正转
  56. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Forward;
  57. BackwordDelayCnt1 = 0;
  58. BackwordDelayCnt2 = 0;
  59. //踏频信号计数
  60. p_MC_CadenceResult->TrigCount++;
  61. }
  62. else if(MC_CadenceSensorStatus.HallGropuStatus_Old == BackwardDir_EncoderData[MC_CadenceSensorStatus.HallGropuStatus & 0x03])//反转做延时判断
  63. {
  64. //反转
  65. BackwordDelayCnt1++;
  66. if(BackwordDelayCnt1 >= 4)//检测到连续4次反向脉冲则判断为反转,约4/120*360=12度
  67. {
  68. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Backward;
  69. BackwordDelayCnt1 = 0;
  70. }
  71. }
  72. else//蹋频波形异常情况下,延时判断为反转
  73. {
  74. //反转
  75. BackwordDelayCnt2++;
  76. if(BackwordDelayCnt2 > 10)
  77. {
  78. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Backward;
  79. BackwordDelayCnt2 = 0;
  80. }
  81. }
  82. }
  83. //踏频计算及启动和停止判断
  84. static uint32_t CadenceCalTimeCnt = 0; //用于计算蹋频值
  85. static int32_t Cadence_ActiveFlt = 0;
  86. static uint16_t CadenceTemp;
  87. static uint8_t CadenceStarFlagCnt = 0; //用于判断启动
  88. static uint32_t CadenceStopJudgeTimeCnt = 0; //用于判断停止
  89. uint8_t CadenceStartThresholdValue = 2; //踏频启动阈值,霍尔信号数,6度/个
  90. if((MC_CadenceSensorStatus.HallGropuStatus & 0x01) != (MC_CadenceSensorStatus.HallGropuStatus_Old & 0x01))
  91. {
  92. //踏频计算及滤波处理
  93. CadenceTemp = 1000 / (HAL_GetTick() - CadenceCalTimeCnt);//转1圈有60个信号,根据两个信号之间的时间计算踏频值rpm
  94. CadenceCalTimeCnt = HAL_GetTick();
  95. // Cadence_ActiveFlt += (((int32_t)CadenceTemp << 8) - Cadence_ActiveFlt) >> 4;
  96. // p_MC_CadenceResult->Cadence_Data = (uint8_t)(Cadence_ActiveFlt >> 8);
  97. /*上坡时,启动阈值为1*/
  98. if(UpSlopeFlag == TRUE)
  99. {
  100. CadenceStartThresholdValue = 1;
  101. }
  102. else
  103. {
  104. CadenceStartThresholdValue = StarCount;
  105. }
  106. //起步判断
  107. if(p_MC_CadenceResult->Cadence_Dir == MC_Cadence_Forward)
  108. {
  109. CadenceStarFlagCnt++;
  110. if(CadenceStarFlagCnt >= CadenceStartThresholdValue)
  111. {
  112. p_MC_CadenceResult->IsStopFlag = FALSE;
  113. }
  114. }
  115. else
  116. {
  117. p_MC_CadenceResult->IsStopFlag = TRUE;
  118. }
  119. /*根据踏频的信号,对力矩进行滤波处理*/
  120. p_MC_CadenceResult->torqueByCadence = torqueFilteredThroughCadence(ADC_SensorData.TorqueSensor,1);
  121. //更新停机计时数值
  122. CadenceStopJudgeTimeCnt = HAL_GetTick();
  123. }
  124. Cadence_ActiveFlt += (((int32_t)CadenceTemp << 10) - Cadence_ActiveFlt) >> 8;
  125. p_MC_CadenceResult->Cadence_Data = (uint8_t)(Cadence_ActiveFlt >> 10);
  126. //停机判断
  127. if(p_MC_CadenceResult->Cadence_Data < (1500 / StopDelayTime))
  128. {
  129. StopDelayTime *= 3;
  130. }
  131. if((HAL_GetTick() - CadenceStopJudgeTimeCnt) > StopDelayTime)
  132. {
  133. p_MC_CadenceResult->IsStopFlag = TRUE;
  134. p_MC_CadenceResult->Cadence_Dir = MC_Cadence_Stop;
  135. p_MC_CadenceResult->Cadence_Data = 0;
  136. CadenceTemp = 0;
  137. Cadence_ActiveFlt = 0;
  138. CadenceStarFlagCnt =0;
  139. /*清零相关变量*/
  140. p_MC_CadenceResult->torqueByCadence = torqueFilteredThroughCadence(ADC_SensorData.TorqueSensor,0);
  141. }
  142. MC_CadenceSensorStatus.HallGropuStatus_Old = MC_CadenceSensorStatus.HallGropuStatus;
  143. }
  144. uint16_t torqueFilteredThroughCadence(uint16_t torque_temp, uint8_t modeFlag)
  145. {
  146. #define T_FIFO_LENGTH 30 //每个信号6度,30为180度
  147. static uint16_t T_FIFO[T_FIFO_LENGTH]={0};
  148. static uint8_t T_Index=0;
  149. static uint32_t T_sum=0;
  150. static uint8_t filter_status_falg=0;
  151. uint16_t result_filtered=0;
  152. if( modeFlag != 0 )
  153. {
  154. /*根据踏频信号,采样最近180度内力矩平均值*/
  155. if(filter_status_falg != 0)
  156. {
  157. T_sum -= T_FIFO[T_Index];
  158. T_sum += torque_temp;
  159. T_FIFO[T_Index] = torque_temp;
  160. }
  161. T_Index++;
  162. if(T_Index >= T_FIFO_LENGTH)
  163. {
  164. T_Index = 0;
  165. if(filter_status_falg == 0)
  166. {
  167. filter_status_falg = 1;
  168. }
  169. else if(filter_status_falg == 1)
  170. {
  171. filter_status_falg = 2;
  172. }
  173. }
  174. if(filter_status_falg == 2)
  175. {
  176. result_filtered = T_sum / T_FIFO_LENGTH;
  177. }
  178. else if(filter_status_falg == 1)
  179. {
  180. /*启动后的前180度-360度,根据实际数据个数求平均值*/
  181. if(T_Index == 0)
  182. {
  183. result_filtered = torque_temp;
  184. }
  185. else
  186. {
  187. result_filtered = T_sum / T_Index;
  188. }
  189. }
  190. else
  191. {
  192. /*启动后的前180度,使用实时值*/
  193. result_filtered = torque_temp;
  194. }
  195. /*力矩实时值低于滤波值的五分之一,使用实时值*/
  196. if(torque_temp < (result_filtered/5) )
  197. {
  198. result_filtered = torque_temp;
  199. }
  200. /*踏频信号采样*/
  201. }
  202. else
  203. {
  204. /*清零变量*/
  205. for(uint8_t i=0;i<T_FIFO_LENGTH;i++)
  206. {
  207. T_FIFO[i] = 0;
  208. }
  209. T_Index = 0;
  210. T_sum = 0;
  211. filter_status_falg=0;
  212. }
  213. return result_filtered;
  214. }