#include "gtest/gtest.h" #include #include #include "scope.h" #include "test_user.h" class CadenceTest : public testing::Test { protected: static void SetUpTestSuite() { cadence_voCadenceInit(); iRt_Init(); } virtual void SetUp() override { } virtual void TearDown() override { cadence_voCadenceInit(); } }; class CadenceTest1 : public CadenceTest, public testing::WithParamInterface<::std::tuple> {}; TEST_P(CadenceTest1, FreCal) { /* Coef Cal */ cadence_voCadenceCof(); cadence_stFreGetCof.uwNumbersPulses = CADENCE_NUMBERS_PULSES; int timerPrd = TIM1CLK_KHZ * 1000 / (1000 / 25); // cnt = 18000, same as STM32 int timerCnt = 0; int cadenceSignal = 0, cadCnt = 0, cadenceSignalLast = 0; int cadencePrd = get<0>(GetParam()); int capValue = 0; testGpioBValue[GPIOB] = get<1>(GetParam()); /* Cadence Cal */ for(int i = 0; i < 100000000; i++) { /* Input Cadence Signal */ cadCnt++; if(cadCnt <= (cadencePrd/2)) // 50% duty { cadenceSignal = 0; } else { cadenceSignal = 1; if(cadCnt >= cadencePrd) { cadCnt = 0; } } /* Timer */ timerCnt ++ ; if(timerCnt >= timerPrd - 1) { timerCnt = 0; testTimerIntFlg[TIMER1][TIMER_INT_FLAG_UP] = 1; } /* Capture: rising and falling edge trigger*/ if(cadenceSignal - cadenceSignalLast != 0) { testCh2CapValue[TIMER1] = timerCnt; testTimerIntFlg[TIMER1][TIMER_INT_FLAG_CH2] = 1; } cadenceSignalLast = cadenceSignal; /* Interrupt: update and capture */ if(testTimerIntFlg[TIMER1][TIMER_INT_FLAG_UP]) { cadence_voCadenceCal(1); testTimerIntFlg[TIMER1][TIMER_INT_FLAG_UP] = 0; } else if(testTimerIntFlg[TIMER1][TIMER_INT_FLAG_CH2]) { cadence_voCadenceCal(2); testTimerIntFlg[TIMER1][TIMER_INT_FLAG_CH2] = 0; } //UdpScope::Send(0, cadence_stFreGetOut.uwFrequencyPu); } double cadFreqPu = (double)TIM1CLK_KHZ * 1000 * 2 * 1048576 / cadencePrd / FBASE / cadence_stFreGetCof.uwNumbersPulses; // Q20 if(cadFreqPu > cadence_stFreGetCof.uwMaxCadenceFre || cadence_stFreGetOut.uwCaputureOverflowCnt > cadence_stFreGetCof.uwHfMaxTimeCnt || cadence_stFreGetOut.cadence_dir == 1) { EXPECT_NEAR(cadence_stFreGetOut.uwFrequencyPu, 0, 0.1); } else { EXPECT_NEAR(cadence_stFreGetOut.uwFrequencyPu, cadFreqPu, 2); } } INSTANTIATE_TEST_SUITE_P(DiffCadencePeriod, CadenceTest1, ::testing::Combine(::testing::Values(0, 500, 3000, 18002, 100000,1000000), ::testing::Values(0,0x0004))); TEST_F(CadenceTest, FreCal2) { /* Coef Cal */ cadence_voCadenceCof(); cadence_stFreGetCof.uwNumbersPulses = CADENCE_NUMBERS_PULSES; /* Test conditions */ cadence_stFreGetOut.cadence_fsm = CADENCE_HFreWork; cadence_stFreGetOut.uwCaputureNumCnt = 1; cadence_stFreGetOut.uwCaputure1Cnt = 0; cadence_stFreGetOut.uwCaputureOverflowCnt = 0; testGpioBValue[GPIOB] = 0; double overflowCnt = cadence_stFreGetOut.uwCaputureOverflowCnt; double cap1Cnt = cadence_stFreGetOut.uwCaputure1Cnt; testTimerIntFlg[TIMER1][TIMER_INT_FLAG_UP] = 1; testCh2CapValue[TIMER1] = 17900; testTimerIntFlg[TIMER1][TIMER_INT_FLAG_CH2] = 1; /* Interrupt: update and capture */ if(testTimerIntFlg[TIMER1][TIMER_INT_FLAG_UP]) { cadence_voCadenceCal(1); testTimerIntFlg[TIMER1][TIMER_INT_FLAG_UP] = 0; } else if(testTimerIntFlg[TIMER1][TIMER_INT_FLAG_CH2]) { cadence_voCadenceCal(2); testTimerIntFlg[TIMER1][TIMER_INT_FLAG_CH2] = 0; } double cadFreqPu = overflowCnt * 18000 + cadence_stFreGetOut.uwCaputure2Cnt - cap1Cnt; cadFreqPu = (double)TIM1CLK_KHZ * 1000 * 2 * 1048576 / cadFreqPu / FBASE / cadence_stFreGetCof.uwNumbersPulses; // Q20 if(cadFreqPu > cadence_stFreGetCof.uwMaxCadenceFre || cadence_stFreGetOut.uwCaputureOverflowCnt > cadence_stFreGetCof.uwHfMaxTimeCnt || cadence_stFreGetOut.cadence_dir == 1) { EXPECT_NEAR(cadence_stFreGetOut.uwFrequencyPu, 0, 0.1); } else { EXPECT_NEAR(cadence_stFreGetOut.uwFrequencyPu, cadFreqPu, 2); } }