/************************************************************************ Project: Welling Motor Control Paltform Filename: spi_master.c Partner Filename: spi_master.h Description: SPI master driver Complier: IAR Embedded Workbench for ARM 8.40.2 CPU TYPE : GD32F30x ************************************************************************* Copyright (c) 2022 Welling Motor Technology(Shanghai) Co. Ltd. All rights reserved. ************************************************************************* ************************************************************************* Revising History (ECL of this file): ************************************************************************/ /************************************************************************ Beginning of File, do not put anything above here except notes Compiler Directives: *************************************************************************/ #ifndef _SPI_MASTER_C_ #define _SPI_MASTER_C_ #endif /************************************************************************ Included File *************************************************************************/ #ifdef RUN_ARCH_SIM #include "spi_master.h" void spi_voResolverInit(void) {} void spi_voResolverCoef(SPI_RESOLVER_COEFIN *in, SPI_RESOLVER_COEF *out) {} void spi_voResolver(const SPI_RESOLVER_COEF *coef, SPI_RESOLVER_OUT *out) {} void spi_voResolverLock(void) {} void spi_voMagneticDetection(void) {} void spi_voReadWriteSeneorReg(void) {} #else #include "syspar.h" #include "user.h" #include "spi_master.h" #include "api.h" #include "gd32f30x_libopt.h" /************************************************************************* Exported Functions (N/A) *************************************************************************/ /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voResolverInit(void) { spi_stResolverOut.uwSpiThetaTmpZ1Pu = 0; spi_stResolverOut.swSpdLpfTmpPu = 0; spi_stResolverOut.swSpdLpfTmpZ1Pu = 0; spi_stResolverOut.uwSpiThetaPu = 0; spi_stResolverOut.uwSpiOrignData = 0; spi_stResolverOut.slPllThetaPu = 0; spi_stResolverOut.uwPllThetaPu = 0; spi_stResolverOut.slThetaErrPu = 0; spi_stResolverOut.slThetaErrZ1Pu = 0; spi_stResolverOut.slThetaDeltaErrPu = 0; spi_stResolverOut.swSpdFbkPu = 0; spi_stResolverOut.swPllSpdFbkPu = 0; spi_stResolverOut.slPllSpdFbkPu = 0; spi_stResolverOut.swSpdFbkLpfPu = 0; } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voResolverCoef(SPI_RESOLVER_COEFIN *in, SPI_RESOLVER_COEF *out) { UWORD uwMvcPu; ULONG ulDamper; UWORD uwDamper; if (in->uwFbHz < 10) { in->uwFbHz = 10; } else if (in->uwFbHz > 10000) { in->uwFbHz = 10000; } else { //do nothing } if (in->uwFreqTbcHz < 10) { in->uwFreqTbcHz = 10; } if (in->uwSpdPllMcoef > 100) { in->uwSpdPllMcoef = 100; } out->uwCurTs = (UWORD)(((ULONG)in->uwFbHz << 10) / in->uwFreqTbcHz); // Q10, TBC time out->uwCurTsPu = (UWORD)(((ULONG)205887 * in->uwFbHz) / in->uwFreqTbcHz); // Q15, Q15(2pi)-->205887 // /************************Speed PLL Coefficient*****************************/ // out->uwSpdPllKpPu = in->uwSpdPllKpPu; //Q14 // out->uwSpdPllKiPu = in->uwSpdPllKiPu; //Q14 /************************Speed PLL Coefficient*****************************/ uwMvcPu = (UWORD)(((ULONG)in->uwSpdPllWvcHz << 10) / in->uwFbHz); // Q10 /* PLL Kp=M*w/sqrt(1+M^2) */ ulDamper = (1 + in->uwSpdPllMcoef * in->uwSpdPllMcoef) << 8; // Q8 uwDamper = (UWORD)mth_slSqrt((SLONG)ulDamper); // Q4 if(uwDamper == 0) { uwDamper = 1; } out->uwSpdPllKpPu = (UWORD)(((ULONG)in->uwSpdPllMcoef * uwMvcPu / uwDamper) << 8); // Q10-Q4+Q8=Q14 /* PLL Ki=w^2*T_cnt_ctrl/sqrt(1+M^2) */ out->uwSpdPllKiPu = (UWORD)(((((ULONG)uwMvcPu * out->uwCurTsPu) / uwDamper) * uwMvcPu) >> 17); // Q10+Q15-Q4+Q10-Q17=Q14 } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voMagneticDetection(void) { UWORD MGL, MGH; MGL = (UWORD)gpio_input_bit_get(GPIOB, GPIO_PIN_0); MGH = (UWORD)gpio_input_bit_get(GPIOB, GPIO_PIN_1); if ((MGL != 0) || (MGH != 0)) { spi_stResolverOut.blMagRangeFltFlg = TRUE; // ! can not indicate magnet range fault } else { spi_stResolverOut.blMagRangeFltFlg = FALSE; } } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ static SLONG spi_pvt_slSpdFbkLpfPu, spi_pvt_slSpdLpfTmpPu; void spi_voResolver(const SPI_RESOLVER_COEF *coef, SPI_RESOLVER_OUT *out) { UWORD uwSpiThetaTmpPu = 0, uwSpiThetaTmpPu2 = 0; SWORD swThetaErrPu = 0, swThetaCompPu = 0; SWORD swSpdTmpPu = 0, swSpdErrPu = 0; ULONG ulTmp1 = 0, ulTmp2 = 0; if (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) == SET) { uwSpiThetaTmpPu = (UWORD)(((ULONG)(spi_i2s_data_receive(SPI2))) >> 1); uwSpiThetaTmpPu &= 0x7FF8; uwSpiThetaTmpPu2 = uwSpiThetaTmpPu; swThetaCompPu = (SWORD)(((SLONG)out->swSpdLpfTmpPu * TLatency_TM) >> 10); // Q15, Consider decoding and SPI Latency:10us ulTmp1 = uwSpiThetaTmpPu + swThetaCompPu + out->swSpiThetaOffsetPu + cof_sl720DegreePu; uwSpiThetaTmpPu = (UWORD)(ulTmp1 & 0x7FFF); ulTmp2 = uwSpiThetaTmpPu2 + cof_sl720DegreePu; uwSpiThetaTmpPu2 = (UWORD)(ulTmp2 & 0x7FFF); out->uwSpiOrignData = uwSpiThetaTmpPu2; /* Calculate speed: Differentiation method */ swThetaErrPu = (SWORD)uwSpiThetaTmpPu - (SWORD)out->uwSpiThetaTmpZ1Pu; out->uwSpiThetaTmpZ1Pu = uwSpiThetaTmpPu; if (swThetaErrPu <= -cof_sl180DegreePu) { swThetaErrPu = (SWORD)(swThetaErrPu + cof_sl360DegreePu); } if (swThetaErrPu >= cof_sl180DegreePu) { swThetaErrPu = (SWORD)(swThetaErrPu - cof_sl360DegreePu); } swSpdTmpPu = (SWORD)(((SLONG)swThetaErrPu * DIFF_COEF_TBC) >> 10); // Q15 /* Judge the correctness of spi position*/ spi_pvt_slSpdLpfTmpPu = (SLONG)0x0277 * (swSpdTmpPu - out->swSpdLpfTmpPu) + spi_pvt_slSpdLpfTmpPu; // 50Hz Q30 out->swSpdLpfTmpPu = (SWORD)(spi_pvt_slSpdLpfTmpPu >> 15); swSpdErrPu = out->swSpdLpfTmpPu - out->swSpdLpfTmpZ1Pu; out->swSpdLpfTmpZ1Pu = out->swSpdLpfTmpPu; if ((swSpdErrPu < USER_MOTOR_1000RPM2PU) && (swSpdErrPu > -USER_MOTOR_1000RPM2PU)) { out->uwSpiThetaPu = uwSpiThetaTmpPu; out->blSpiThetaFltFlg = FALSE; } else { out->blSpiThetaFltFlg = TRUE; } } else { out->blSpiThetaFltFlg = TRUE; } out->swSpdFbkPu = swSpdTmpPu; /*Calculate speed: PLL method*/ // SLONG slThetaErrPu,slThetaDeltaErrPu,slPllThetaPu; // SLONG slKpTmpPu,slKitTmpPu,slPllSpdFbkPu; // ULONG ulSpdPllKpPu,ulSpdPllKiPu; // // slThetaErrPu = (SLONG)out->uwSpiThetaPu - (out->uwPllThetaPu + (((SLONG)out->swPllSpdFbkPu * coef->uwCurTs) >> 10)); //Q15 // // if (slThetaErrPu >= cof_sl180DegreePu) // { // slThetaErrPu-= cof_sl360DegreePu; // } // if(slThetaErrPu <= -cof_sl180DegreePu) // { // slThetaErrPu += cof_sl360DegreePu; // } // slThetaDeltaErrPu = slThetaErrPu - out->slThetaErrZ1Pu; // out->slThetaErrZ1Pu = slThetaErrPu; // // /* Variable parameter PI,untested*/ ////// if(out->swPllSpdFbkPu < cof_uw1000RpmPu - cof_uw200RpmPu) ////// { ////// ulSpdPllKpPu = coef->uwSpdPllKpPu; ////// ulSpdPllKiPu = coef->uwSpdPllKiPu; ////// } ////// else if((out->swPllSpdFbkPu > cof_uw1000RpmPu) && (out->swPllSpdFbkPu < cof_uw2000RpmPu - cof_uw200RpmPu)) ////// { ////// ulSpdPllKpPu = coef->uwSpdPllKpPu * 2; ////// ulSpdPllKiPu = coef->uwSpdPllKiPu * 2 * 2; ////// } ////// else if((out->swPllSpdFbkPu > cof_uw2000RpmPu) && (out->swPllSpdFbkPu < cof_uw3000RpmPu - cof_uw200RpmPu)) ////// { ////// ulSpdPllKpPu = coef->uwSpdPllKpPu * 4; ////// ulSpdPllKiPu = coef->uwSpdPllKiPu * 4 * 4; ////// } ////// else if((out->swPllSpdFbkPu > cof_uw3000RpmPu) && (out->swPllSpdFbkPu < cof_uw4000RpmPu - cof_uw200RpmPu)) ////// { ////// ulSpdPllKpPu = coef->uwSpdPllKpPu * 8; ////// ulSpdPllKiPu = coef->uwSpdPllKiPu * 8 * 8; ////// } ////// else if (out->swPllSpdFbkPu > cof_uw4000RpmPu) ////// { ////// ulSpdPllKpPu = coef->uwSpdPllKpPu * 16; ////// ulSpdPllKiPu = coef->uwSpdPllKiPu * 16 * 16; ////// } // // ulSpdPllKpPu = coef->uwSpdPllKpPu; // ulSpdPllKiPu = coef->uwSpdPllKiPu; // // slKpTmpPu = slThetaDeltaErrPu * (SLONG)ulSpdPllKpPu; //Q15+Q14=Q29 // slKitTmpPu = slThetaErrPu * (SLONG)ulSpdPllKiPu; // slPllSpdFbkPu = slKpTmpPu + slKitTmpPu + out->slPllSpdFbkPu; // if(slPllSpdFbkPu >= 0x20000000) // { // slPllSpdFbkPu = 0x20000000-1; //Q29 // } // if(slPllSpdFbkPu <= -0x20000000) // { // slPllSpdFbkPu = -0x20000000; //Q29 // } // out->slPllSpdFbkPu = slPllSpdFbkPu; //Q29 // out->swPllSpdFbkPu = (SWORD)(slPllSpdFbkPu >> 14); //Q15 // // slPllThetaPu = out->slPllThetaPu + (((SLONG)out->swPllSpdFbkPu * coef->uwCurTs) << 4); //Q15+Q10+Q4=Q29 // if(slPllThetaPu >= 0x20000000) // { // slPllThetaPu -= 0x20000000; // } // if(slPllThetaPu < 0) // { // slPllThetaPu += 0x20000000; // } // out->slPllThetaPu = slPllThetaPu; // out->uwPllThetaPu = (UWORD)((ULONG)slPllThetaPu >> 14); //Q15 = Q29 - Q14 // //// spi_pvt_slSpdFbkLpfPu = (SLONG)0x00FF * (out->swPllSpdFbkPu - out->swSpdFbkLpfPu) + spi_pvt_slSpdFbkLpfPu; //20Hz Q30 //// out->swSpdFbkLpfPu = spi_pvt_slSpdFbkLpfPu >> 15; } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voResolverLock(void) { /* CS signal enable */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2,0x0550); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET) {} /* CS signal disable */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); } /************************************************************************* Function: Description: Call by: Input Variables: Output/Return Variables: Subroutine Call: Reference: *************************************************************************/ void spi_voReadWriteSeneorReg(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */ { UWORD BCTValue = 0x25; UWORD uwReadBCTReg = 0, uwReadETXY = 0; UWORD uwWriteBCTReg = 0, uwWriteETXY = 0, uwWriteRD = 0; UWORD uwDelayCnt1 = 0, uwDelayCnt2 = 0; /* Read the BCT register value */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); /*!< CS signal enable,for data update */ while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x4200); //comp value while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET) {} iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwReadBCTReg = spi_i2s_data_receive(SPI2); /*!< Read the first time */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x0000); /*!< Write the second time */ while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET) {} iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwReadBCTReg = spi_i2s_data_receive(SPI2); /*!< Read the BCT register value */ /* Read the ETX ETY value */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x4300); //comp direction while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET) {} iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwReadETXY = spi_i2s_data_receive(SPI2); /*!< Read the first time */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x0000); /*!< Write the second time */ while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET) {} iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwReadETXY = spi_i2s_data_receive(SPI2); /*!< Read the ETX ETY value */ if (uwReadBCTReg == (BCTValue << 8) && uwReadETXY == 0x0100) { spi_blReadRegCorrectFlg = TRUE; } else { spi_blReadRegCorrectFlg = FALSE; } /* Write MA702 BCT, EXY, RD Register */ if ((spi_blReadRegCorrectFlg == FALSE) && (spi_blWriteRegFinishFlg == FALSE)) //if (spi_blWriteRegFinishFlg == FALSE) { /* Write and Read BCT value*/ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); // Data update while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)// Discontinuous transmission, can not indicate send complete {} spi_i2s_data_transmit(SPI2, (0x8200 | BCTValue)); // LSB,BCT=48 while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwWriteBCTReg = spi_i2s_data_receive(SPI2); iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); /* Delay at least 22ms */ while (uwDelayCnt2 < 20) { uwDelayCnt1++; if (uwDelayCnt1 == 10000) { uwDelayCnt2++; uwDelayCnt1 = 0; } } iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x0000); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwWriteBCTReg = spi_i2s_data_receive(SPI2); iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); /* Write and Read ETX or ETY */ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x8301); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwWriteETXY = spi_i2s_data_receive(SPI2); iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); /* Delay at least 22ms */ uwDelayCnt2 = 0; while (uwDelayCnt2 < 20) { uwDelayCnt1++; if (uwDelayCnt1 == 10000) { uwDelayCnt2++; uwDelayCnt1 = 0; } } iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x0000); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwWriteETXY = spi_i2s_data_receive(SPI2); iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); /* Write and Read RD value*/ iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x8980); // RD=1,Counterclockwise,8980; RD=0,Clockwise,8900 while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwWriteRD = spi_i2s_data_receive(SPI2); iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); /* Delay at least 22ms */ uwDelayCnt2 = 0; while (uwDelayCnt2 < 20) { uwDelayCnt1++; if (uwDelayCnt1 == 10000) { uwDelayCnt2++; uwDelayCnt1 = 0; } } iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET) {} spi_i2s_data_transmit(SPI2, 0x0000); while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET) {} uwWriteRD = spi_i2s_data_receive(SPI2); iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel); if (uwWriteBCTReg == (BCTValue << 8) && uwWriteETXY == 0x0100 && uwWriteRD == 0x8000) // MSB { spi_blWriteRegFinishFlg = TRUE; // Need stored in EEPROM } else { spi_blWriteRegFinishFlg = FALSE; } } } /************************************************************************* Local Functions (N/A) *************************************************************************/ /************************************************************************* Copyright (c) 2022 Welling Motor Technology(Shanghai) Co. Ltd. All rights reserved. *************************************************************************/ #ifdef _SPI_MASTER_C_ #undef _SPI_MASTER_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */ #endif #endif /************************************************************************* End of this File (EOF)! Do not put anything after this part! *************************************************************************/