adc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "Temp.h"
  28. #ifdef RUN_ARCH_SIM
  29. #include "test_user.h"
  30. #endif
  31. /************************************************************************
  32. Constant Table:
  33. *************************************************************************/
  34. /************************************************************************
  35. Exported Functions:
  36. *************************************************************************/
  37. /***************************************************************
  38. Function: adc_voCalibration;
  39. Description: Get phase A and B current zero point, other A/D sample value
  40. Call by: main() before InitADC;
  41. Input Variables: N/A
  42. Output/Return Variables: ADCTESTOUT
  43. Subroutine Call: N/A
  44. Reference: N/A
  45. ****************************************************************/
  46. #ifdef RUN_ARCH_SIM
  47. #else
  48. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  49. {
  50. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  51. {
  52. if (!hw_blChrgOvrFlg)
  53. {
  54. hw_voCharge();
  55. }
  56. else
  57. {
  58. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  59. {
  60. pwm_stGenOut.uwRdsonTrig = 129;
  61. pwm_stGenOut.uwSigRTrig = HW_HHHPWM_PERIOD;
  62. pwm_stGenOut.blSampleCalibFlag = TRUE;
  63. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  64. {
  65. out1->ulIdcRegSum += adc_uwADDMAPhase1;
  66. out1->ulIaRegSum += adc_uwRdsonUReg;
  67. out1->ulIbRegSum += adc_uwRdsonVReg;
  68. out1->ulIcRegSum += adc_uwRdsonWReg;
  69. out1->uwADCCalibCt++;
  70. }
  71. else
  72. {
  73. hw_voPWMInit(); // mos up charge and adc calib over; pwm off
  74. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  75. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  76. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  77. out1->ulIaRegSum = 0;
  78. out1->ulIbRegSum = 0;
  79. out1->ulIcRegSum = 0;
  80. pwm_stGenOut.blSampleCalibFlag = FALSE;
  81. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> ADC_CALIB_INDEX);
  82. out1->ulIdcRegSum = 0;
  83. out1->uwADCCalibCt = 0;
  84. out1->blADCCalibFlg = TRUE;
  85. out2->uwADCCalibCt = 0;
  86. out2->blADCCalibFlg = TRUE;
  87. }
  88. }
  89. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  90. {
  91. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  92. {
  93. out1->ulIdcRegSum += adc_uwADDMAPhase1 + adc_uwADDMAPhase2;
  94. out1->uwADCCalibCt++;
  95. }
  96. else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  97. {
  98. out2->uwADCCalibCt++;
  99. }
  100. else
  101. {
  102. hw_voPWMInit();
  103. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1));
  104. out1->ulIdcRegSum = 0;
  105. out1->uwADCCalibCt = 0;
  106. out1->blADCCalibFlg = TRUE;
  107. out2->uwADCCalibCt = 0;
  108. out2->blADCCalibFlg = TRUE;
  109. }
  110. }
  111. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  112. {
  113. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  114. {
  115. out1->ulIaRegSum += adc_uwRdsonUReg;
  116. out1->ulIbRegSum += adc_uwRdsonVReg;
  117. out1->ulIcRegSum += adc_uwRdsonWReg;
  118. out1->uwADCCalibCt++;
  119. }
  120. else
  121. {
  122. hw_voPWMInit();
  123. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  124. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  125. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  126. out1->ulIaRegSum = 0;
  127. out1->ulIbRegSum = 0;
  128. out1->ulIcRegSum = 0;
  129. out1->uwADCCalibCt = 0;
  130. out1->blADCCalibFlg = TRUE;
  131. out2->uwADCCalibCt = 0;
  132. out2->blADCCalibFlg = TRUE;
  133. }
  134. }
  135. else
  136. {
  137. //do noting
  138. }
  139. }
  140. }
  141. }
  142. #endif
  143. /***************************************************************
  144. Function: adc_voSample;
  145. Description: Get three-phase current value after zero point and gain process
  146. Call by: functions in TBC;
  147. Input Variables: ADCIABFIXCOF
  148. Output/Return Variables: ADCTESTOUT
  149. Subroutine Call:
  150. Reference: N/A
  151. ****************************************************************/
  152. void adc_voSampleDown(const ADC_COF *cof, ADC_DOWN_OUT *out) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  153. {
  154. UWORD uwIpeakPu;
  155. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  156. {
  157. out->uwIaReg = adc_uwRdsonUReg;
  158. out->uwIbReg = adc_uwRdsonVReg;
  159. out->uwIcReg = adc_uwRdsonWReg;
  160. out->slSampIaPu = -(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  161. out->slSampIbPu = -(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  162. out->slSampIcPu = -(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  163. out->swIaPu = (SWORD)((out->slSampIaPu * (SLONG)cof->uwCalibcoef) >> 10);
  164. out->swIbPu = (SWORD)((out->slSampIbPu * (SLONG)cof->uwCalibcoef) >> 10);
  165. out->swIcPu = (SWORD)((out->slSampIcPu * (SLONG)cof->uwCalibcoef) >> 10);
  166. }
  167. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  168. {
  169. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  170. /* Register value */
  171. out->uwFirstCurREG = adc_uwADDMAPhase1; // Q12
  172. out->uwSecondCurREG = adc_uwADDMAPhase2; // Q12
  173. tmp_swIphase1 = (SWORD)out->uwFirstCurREG - (SWORD)cof->uwIdcOffset;
  174. tmp_swIphase1 = (SWORD)((tmp_swIphase1 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  175. tmp_swIphase2 = (SWORD)cof->uwIdcOffset - (SWORD)out->uwSecondCurREG;
  176. tmp_swIphase2 = (SWORD)((tmp_swIphase2 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  177. tmp_swIphase3 = (SWORD)out->uwSecondCurREG - (SWORD)out->uwFirstCurREG;
  178. tmp_swIphase3 = (SWORD)((tmp_swIphase3 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  179. out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  180. switch (pwm_stGenOut.uwNewSectorNum)
  181. {
  182. case 1:
  183. out->swIbPu = tmp_swIphase1; // v
  184. out->swIcPu = tmp_swIphase2; //-w
  185. out->swIaPu = tmp_swIphase3; // u
  186. break;
  187. case 2:
  188. out->swIaPu = tmp_swIphase1; // u
  189. out->swIbPu = tmp_swIphase2; //-v
  190. out->swIcPu = tmp_swIphase3;
  191. break;
  192. case 3:
  193. out->swIaPu = tmp_swIphase1; // u
  194. out->swIcPu = tmp_swIphase2; //-w
  195. out->swIbPu = tmp_swIphase3;
  196. break;
  197. case 4:
  198. out->swIcPu = tmp_swIphase1; // w
  199. out->swIaPu = tmp_swIphase2; //-u
  200. out->swIbPu = tmp_swIphase3;
  201. break;
  202. case 5:
  203. out->swIbPu = tmp_swIphase1; // v
  204. out->swIaPu = tmp_swIphase2; //-u
  205. out->swIcPu = tmp_swIphase3;
  206. break;
  207. case 6:
  208. out->swIcPu = tmp_swIphase1; // w
  209. out->swIbPu = tmp_swIphase2; //-v
  210. out->swIaPu = tmp_swIphase3;
  211. break;
  212. default:
  213. out->swIaPu = 0;
  214. out->swIbPu = 0;
  215. out->swIcPu = 0;
  216. break;
  217. }
  218. }
  219. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  220. {
  221. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  222. out->uwIaReg = adc_uwRdsonUReg;
  223. out->uwIbReg = adc_uwRdsonVReg;
  224. out->uwIcReg = adc_uwRdsonWReg;
  225. tmp_swIphase1 = (SWORD)-(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  226. tmp_swIphase2 = (SWORD)-(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  227. tmp_swIphase3 = (SWORD)-(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  228. switch (pwm_stGenOut.uwSampleArea)
  229. {
  230. case IgnoreNone:
  231. out->swIaPu = tmp_swIphase1;
  232. out->swIbPu = tmp_swIphase2;
  233. out->swIcPu = tmp_swIphase3;
  234. break;
  235. case IgnoreA:
  236. out->swIaPu = -tmp_swIphase2 - tmp_swIphase3;
  237. out->swIbPu = tmp_swIphase2;
  238. out->swIcPu = tmp_swIphase3;
  239. break;
  240. case IgnoreB:
  241. out->swIaPu = tmp_swIphase1;
  242. out->swIbPu = -tmp_swIphase1 - tmp_swIphase3;
  243. out->swIcPu = tmp_swIphase3;
  244. break;
  245. case IgnoreC:
  246. out->swIaPu = tmp_swIphase1;
  247. out->swIbPu = tmp_swIphase2;
  248. out->swIcPu = tmp_swIphase3;
  249. break;
  250. case IgnoreAB:
  251. out->swIaPu = -tmp_swIphase3 >> 1;
  252. out->swIbPu = -tmp_swIphase3 >> 1;
  253. out->swIcPu = tmp_swIphase3;
  254. break;
  255. case IgnoreBC:
  256. out->swIaPu = tmp_swIphase1;
  257. out->swIbPu = -tmp_swIphase1 >> 1;
  258. out->swIcPu = -tmp_swIphase1 >> 1;
  259. break;
  260. case IgnoreAC:
  261. out->swIaPu = -tmp_swIphase2 >> 1;
  262. out->swIbPu = tmp_swIphase2;
  263. out->swIcPu = -tmp_swIphase2 >> 1;
  264. break;
  265. default:
  266. break;
  267. }
  268. }
  269. else
  270. {
  271. //do nothing
  272. }
  273. /* Current absolute value & max value */
  274. if ((out->swIaPu) >= 0)
  275. {
  276. out->uwIaAbsPu = (UWORD)out->swIaPu;
  277. }
  278. else
  279. {
  280. out->uwIaAbsPu = (UWORD)-out->swIaPu;
  281. }
  282. if ((out->swIbPu) >= 0)
  283. {
  284. out->uwIbAbsPu = (UWORD)out->swIbPu;
  285. }
  286. else
  287. {
  288. out->uwIbAbsPu = (UWORD)-out->swIbPu;
  289. }
  290. if ((out->swIcPu) >= 0)
  291. {
  292. out->uwIcAbsPu = (UWORD)out->swIcPu;
  293. }
  294. else
  295. {
  296. out->uwIcAbsPu = (UWORD)-out->swIcPu;
  297. }
  298. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  299. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  300. out->uwIpeakPu = uwIpeakPu;
  301. }
  302. void adc_voSampleUp(const ADC_COF *cof, ADC_UP_OUT *out)
  303. {
  304. /* Register value */
  305. out->uwVdcReg = hw_uwADC0[0];
  306. out->uwU6VReg = hw_uwADC0[1];
  307. out->uwU5VReg = hw_uwADC0[2];
  308. out->PCBTempReg = hw_uwADC0[3];
  309. out->TorqTempReg = hw_uwADC0[4];
  310. out->uwU12VReg = hw_uwADC0[5];
  311. out->uwThrottleReg = hw_uwADC0[6];
  312. out->uwVdcPu = (UWORD)((ULONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10); // Q14=Q24-Q10
  313. /* Vdc LPF */
  314. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  315. out->uwU6VPu = (UWORD)((ULONG)out->uwU6VReg * cof->uwU6VReg2Pu >> 10); // Q14=Q24-Q10;
  316. out->uwU5VPu = (UWORD)((ULONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10); // Q14=Q24-Q10;
  317. out->uwU12VPu = (UWORD)((ULONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10); // Q14=Q24-Q10;
  318. out->MotorTempR = out->MotorTempReg * cof->swMotorTempKcof >> 10; // Q14=Q24-Q10;
  319. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  320. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  321. {
  322. switch (pwm_stGenOut.uwSingelRSampleArea)
  323. {
  324. case 0:
  325. out->swCalibIaPu = 0;
  326. out->swCalibIbPu = 0;
  327. out->swCalibIcPu = 0;
  328. break;
  329. case SampleA:
  330. out->swCalibIaPu = -(SWORD)((((SWORD)adc_uwADDMAPhase1 - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  331. break;
  332. case SampleB:
  333. out->swCalibIbPu = -(SWORD)((((SWORD)adc_uwADDMAPhase1 - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  334. break;
  335. case SampleC:
  336. out->swCalibIcPu = -(SWORD)((((SWORD)adc_uwADDMAPhase1 - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  337. break;
  338. default:
  339. break;
  340. }
  341. }
  342. ////////////////// PCB TEMP//////////////////////////////////////////////////////
  343. if(out->PCBTempReg != 0)
  344. {
  345. out->PCBTempR = (UWORD)((ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER); // Q14=Q24-Q10;
  346. }
  347. PcbTempCal((SWORD)out->PCBTempR);
  348. out->PCBTemp = tmp_PcbTemp;
  349. }
  350. static SWORD adc_pvt_swSingleReg = 0;
  351. static SLONG adc_pvt_slRdsonReg = 0;
  352. static LPF_OUT adc_pvt_stRdsonCoefLpf = {.slY.sw.hi = 1024, .slY.sw.low = 0};
  353. static BOOL adc_pvt_blCalGainFlg = FALSE;
  354. static ULONG adc_pvt_ulGainTemp1 = 0;
  355. static ULONG adc_pvt_ulIaAbsPu, adc_pvt_ulIbAbsPu, adc_pvt_ulIcAbsPu, adc_pvt_ulIPeakPu;
  356. void adc_voSRCalibration(ADC_COF *cof, const ADC_UP_OUT *up_out, ADC_DOWN_OUT *down_out)
  357. {
  358. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  359. {
  360. switch (pwm_stGenOut.uwSingelRSampleArea)
  361. {
  362. case 0:
  363. break;
  364. case SampleA:
  365. if(adc_pvt_swSingleReg > up_out->swCalibIaPu)
  366. {
  367. adc_pvt_swSingleReg = up_out->swCalibIaPu;
  368. }
  369. if(adc_pvt_slRdsonReg > down_out->slSampIaPu)
  370. {
  371. adc_pvt_slRdsonReg = down_out->slSampIaPu;
  372. }
  373. break;
  374. case SampleB:
  375. if(adc_pvt_swSingleReg > up_out->swCalibIbPu)
  376. {
  377. adc_pvt_swSingleReg = up_out->swCalibIbPu;
  378. }
  379. if(adc_pvt_slRdsonReg > down_out->slSampIbPu)
  380. {
  381. adc_pvt_slRdsonReg = down_out->slSampIbPu;
  382. }
  383. break;
  384. case SampleC:
  385. if(adc_pvt_swSingleReg > up_out->swCalibIcPu)
  386. {
  387. adc_pvt_swSingleReg = up_out->swCalibIcPu;
  388. }
  389. if(adc_pvt_slRdsonReg > down_out->slSampIcPu)
  390. {
  391. adc_pvt_slRdsonReg = down_out->slSampIcPu;
  392. }
  393. break;
  394. default:
  395. break;
  396. }
  397. adc_pvt_blCalGainFlg = TRUE;
  398. }
  399. else
  400. {
  401. ULONG ulOverflowCurPu = (ULONG)(4095 - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10;
  402. if(scm_uwSpdFbkLpfAbsPu < 2500)
  403. {
  404. adc_pvt_ulIaAbsPu = abs(down_out->slSampIaPu);
  405. adc_pvt_ulIbAbsPu = abs(down_out->slSampIbPu);
  406. adc_pvt_ulIcAbsPu = abs(down_out->slSampIcPu);
  407. adc_pvt_ulIPeakPu = adc_pvt_ulIaAbsPu > adc_pvt_ulIbAbsPu ? adc_pvt_ulIaAbsPu : adc_pvt_ulIbAbsPu;
  408. down_out->ulISamplePeakPu = adc_pvt_ulIcAbsPu > adc_pvt_ulIPeakPu ? adc_pvt_ulIcAbsPu : adc_pvt_ulIPeakPu;
  409. if(down_out->ulISamplePeakPu > 32767)
  410. {
  411. adc_pvt_ulGainTemp1 = 780; ///< Rdson电流采样溢出SWORD时校准系数需小于1024
  412. adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1; ///< 系数立刻变化,不经过滤波,防止down_out->swIaPu溢出
  413. }
  414. // else if(down_out->ulISamplePeakPu > 25800) ///< 25800 = 32767 / (1300 / 1024)
  415. // {
  416. // adc_pvt_ulGainTemp1 = 1024;
  417. // adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1;
  418. // }
  419. else
  420. {
  421. adc_pvt_ulGainTemp1 = 1024; ///< 允许其他数值,但大于1024需注意溢出SWORD
  422. }
  423. cof->blCalibCalFlag = FALSE;
  424. adc_pvt_blCalGainFlg = FALSE;
  425. }
  426. else
  427. {
  428. if(adc_pvt_blCalGainFlg)
  429. {
  430. if(adc_pvt_slRdsonReg != 0 && abs(adc_pvt_slRdsonReg) < ulOverflowCurPu)
  431. {
  432. adc_pvt_ulGainTemp1 = (SLONG)((SLONG)adc_pvt_swSingleReg << 10) / (SLONG)adc_pvt_slRdsonReg;
  433. }
  434. else if(abs(adc_pvt_slRdsonReg) >= ulOverflowCurPu)
  435. {
  436. adc_pvt_ulGainTemp1 = 780; ///< Rdson电流采样削顶时不再校准电流,强制输出为119A防止溢出,尽快报出过流故障
  437. adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1;
  438. }
  439. else
  440. {
  441. // do nothing
  442. }
  443. if(adc_pvt_ulGainTemp1 > cof->uwCalibcoefMax)
  444. {
  445. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMax;
  446. }
  447. else if(adc_pvt_ulGainTemp1 < cof->uwCalibcoefMin)
  448. {
  449. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMin;
  450. }
  451. else
  452. {
  453. //do nothing
  454. }
  455. cof->blCalibCalFlag = TRUE;
  456. adc_pvt_blCalGainFlg = FALSE;
  457. }
  458. else
  459. {
  460. adc_pvt_swSingleReg = 0;
  461. adc_pvt_slRdsonReg = 0;
  462. }
  463. }
  464. mth_voLPFilter((SWORD)adc_pvt_ulGainTemp1, &adc_pvt_stRdsonCoefLpf);
  465. cof->uwCalibcoef = adc_pvt_stRdsonCoefLpf.slY.sw.hi;
  466. }
  467. }
  468. /***************************************************************
  469. Function: adc_voSampleCoef;
  470. Description: Get other A/D sample value
  471. Call by: functions in Mainloop;
  472. Input Variables: ADCIABFIXCOF
  473. Output/Return Variables: ADCTESTOUT
  474. Subroutine Call:
  475. Reference: N/A
  476. ****************************************************************/
  477. void adc_voSampleCoef(ADC_COF *cof)
  478. {
  479. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  480. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  481. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  482. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  483. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  484. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  485. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  486. cof->uwCalibcoef = 1024;
  487. cof->uwCalibcoefMax = 2048;
  488. cof->uwCalibcoefMin = 200;
  489. cof->uwCalibCoefK = 160; // q10
  490. mth_voLPFilterCoef(1000000 / 30, FTBC_HZ, &adc_pvt_stRdsonCoefLpf.uwKx); //100Hz
  491. }
  492. /***************************************************************
  493. Function: adc_voSampleInit;
  494. Description: ADC sample initialization
  495. Call by: mn_voSoftwareInit;
  496. Input Variables: N/A
  497. Output/Return Variables: N/A
  498. Subroutine Call:
  499. Reference: N/A
  500. ****************************************************************/
  501. void adc_voSampleInit(void)
  502. {
  503. adc_stDownOut.swIaPu = 0;
  504. adc_stDownOut.swIbPu = 0;
  505. adc_stDownOut.swIcPu = 0;
  506. adc_stDownOut.uwIaAbsPu = 0;
  507. adc_stDownOut.uwIbAbsPu = 0;
  508. adc_stDownOut.uwIcAbsPu = 0;
  509. adc_stDownOut.uwIpeakPu = 0;
  510. adc_stDownOut.uwIaReg = 0;
  511. adc_stDownOut.uwIbReg = 0;
  512. adc_stDownOut.uwIcReg = 0;
  513. adc_stDownOut.uwFirstCurREG = 0;
  514. adc_stDownOut.uwSecondCurREG = 0;
  515. adc_stDownOut.uwADCSector = 0;
  516. adc_stDownOut.uwIaAvgPu = 0;
  517. adc_stDownOut.uwIbAvgPu = 0;
  518. adc_stDownOut.uwIcAvgPu = 0;
  519. adc_stDownOut.ulUaRegSum = 0;
  520. adc_stDownOut.ulUbRegSum = 0;
  521. adc_stDownOut.ulUcRegSum = 0;
  522. adc_stDownOut.ulIdcRegSum = 0;
  523. adc_stDownOut.ulIaRegSum = 0;
  524. adc_stDownOut.ulIbRegSum = 0;
  525. adc_stDownOut.ulIcRegSum = 0;
  526. adc_stDownOut.uwADCCalibCt = 0;
  527. adc_stDownOut.blADCCalibFlg = FALSE;
  528. adc_stDownOut.ulISamplePeakPu = 0;
  529. adc_stUpOut.uwVdcPu = 0;
  530. adc_stUpOut.uwVdcLpfPu = 0;
  531. adc_stUpOut.uwU6VPu = 0;
  532. adc_stUpOut.uwU5VPu = 0;
  533. adc_stUpOut.uwU12VPu = 0;
  534. adc_stUpOut.uwTrottlePu = 0;
  535. adc_stUpOut.PCBTemp = 0;
  536. adc_stUpOut.MotorTemp = 0;
  537. adc_stUpOut.uwVdcReg = 0;
  538. adc_stUpOut.uwU6VReg = 0;
  539. adc_stUpOut.uwU5VReg = 0;
  540. adc_stUpOut.uwU12VReg = 0;
  541. adc_stUpOut.uwThrottleReg = 0;
  542. adc_stUpOut.PCBTempReg = 0;
  543. adc_stUpOut.MotorTempReg = 0;
  544. adc_stUpOut.swCalibIaPu = 0;
  545. adc_stUpOut.swCalibIbPu = 0;
  546. adc_stUpOut.swCalibIcPu = 0;
  547. adc_stUpOut.uwADCCalibCt = 0;
  548. adc_stUpOut.blADCCalibFlg = FALSE;
  549. adc_stUpOut.swIPMTempCe = 0;
  550. adc_pvt_swSingleReg = 0;
  551. adc_pvt_slRdsonReg = 0;
  552. adc_pvt_stRdsonCoefLpf.slY.sw.hi = 1024;
  553. adc_pvt_stRdsonCoefLpf.slY.sw.low = 0;
  554. adc_pvt_blCalGainFlg = FALSE;
  555. adc_pvt_ulGainTemp1 = 0;
  556. adc_pvt_ulIaAbsPu = 0;
  557. adc_pvt_ulIbAbsPu = 0;
  558. adc_pvt_ulIcAbsPu = 0;
  559. adc_pvt_ulIPeakPu = 0;
  560. }
  561. /*************************************************************************
  562. Local Functions (N/A)
  563. *************************************************************************/
  564. /************************************************************************
  565. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  566. All rights reserved.
  567. *************************************************************************/
  568. #ifdef _ADCDRV_C_
  569. #undef _ADCDRV_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  570. #endif
  571. /*************************************************************************
  572. End of this File (EOF)!
  573. Do not put anything after this part!
  574. *************************************************************************/