AssistCurve.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "FSM_1st.h"
  21. #include "Cadence.h"
  22. #include "torquesensor.h"
  23. #include "flash_master.h"
  24. /******************************
  25. *
  26. * Parameter
  27. *
  28. ******************************/
  29. ASS_FSM_STATUS Ass_FSM;
  30. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  31. ASS_PER_COEF ass_stCalCoef;
  32. ASS_PER_OUT ass_stCalOut;
  33. ASS_PARA_CONFIGURE ass_stParaCong;
  34. ASS_PARA_SET ass_stParaSet;
  35. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  36. ASS_CURLIM_OUT ass_stCurLimOut;
  37. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  38. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  39. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  40. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  41. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  42. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  43. ASS_TORQ_PI_IN ass_stTorqPIIn;
  44. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  45. SWORD ass_swTorqMafBuf[64];
  46. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  47. SWORD ass_swUqLimMafBuf[64];
  48. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  49. TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  50. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  51. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  52. /******************************
  53. *
  54. * Function
  55. *
  56. ******************************/
  57. /**
  58. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  59. *
  60. * @param coef polynomial coefficient a, b, c, d
  61. * @param Value polynomial input value X
  62. * @param Qnum polynomial input Q type
  63. * @return UWORD polynomial output Y
  64. */
  65. static SLONG ass_slPolynomial(POLY_COEF *coef, SWORD *value, UWORD Qnum)
  66. {
  67. SLONG out;
  68. SLONG temp_a, temp_b, temp_c;
  69. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  70. temp_a = (((((SQWORD)coef->a * *value >> 12) * *value) >> Qnum) * *value) >> Qnum; // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  71. temp_b = (((SQWORD)coef->b * *value >> 12) * *value) >> Qnum; // Qx+Q12-Q12+Qx-Qx=Qx
  72. temp_c = (SQWORD)coef->c * *value >> 12; // Qx+Q12-Q12=Qx
  73. out = temp_a + temp_b + temp_c + coef->d;
  74. out = (SLONG)out;
  75. return out;
  76. }
  77. /**
  78. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  79. *
  80. * @param coef original point coefficient z, h, k
  81. * @return POLY_COEF a, b, c, d
  82. */
  83. static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  84. {
  85. POLY_COEF out;
  86. /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  87. out.a = (SQWORD)0; // Q12
  88. out.b = (SQWORD)coef->z; // Q12
  89. out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  90. out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  91. return out;
  92. }
  93. /**
  94. * @brief Torque to Current when Id = 0;
  95. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  96. * @param coef polynomial coefficient a, b, c, d
  97. * @param Value polynomial input value X
  98. * @param Qnum polynomial input Q type
  99. * @return UWORD polynomial output Y
  100. */
  101. static SWORD ass_swTorq2CurPu(SWORD Tor)
  102. {
  103. SWORD CurrentPu;
  104. SWORD MotorTorqueNotPu;
  105. MotorTorqueNotPu = ((SLONG)Tor * TORQUEBASE / ass_stParaCong.uwMechRationMotor) >> 7; // Q14-Q7 = Q7 0.1Nm Not Pu
  106. CurrentPu = ((SLONG)MotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE; // Q7+Q7 = Q14; 0.1Nm/0.01A
  107. return CurrentPu;
  108. }
  109. /**
  110. * @brief
  111. *
  112. * @param
  113. * @return
  114. */
  115. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  116. {
  117. UWORD TempAssit;
  118. UWORD TempGear, gear;
  119. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  120. // {
  121. // TempAssit = ass_stParaCong.uwAssistSelect1;
  122. // }
  123. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  124. // {
  125. // TempAssit = ass_stParaCong.uwAssistSelect2;
  126. // }
  127. // else
  128. // {
  129. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  130. // }
  131. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  132. {
  133. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  134. }
  135. else if (ass_stParaCong.uwStartMode == 2)
  136. {
  137. TempAssit = ass_stParaCong.uwAssistSelect1;
  138. }
  139. else if (ass_stParaCong.uwStartMode == 3)
  140. {
  141. TempAssit = ass_stParaCong.uwAssistSelect2;
  142. }
  143. else
  144. {
  145. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  146. }
  147. for (gear = 0; gear < 5; gear++)
  148. {
  149. TempGear = gear * 3 + ((TempAssit >> (gear << 1)) & 0x0003);
  150. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  151. }
  152. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  153. }
  154. /**
  155. * @brief Para from EE Init
  156. *
  157. * @param void
  158. * @return void
  159. */
  160. void ass_voAssitEEInit(void)
  161. {
  162. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  163. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  164. ass_stParaCong.uwMechRationMotor = 35; // Q0
  165. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  166. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  167. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  168. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  169. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  170. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  171. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_VOLTAGE;
  172. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  173. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  174. ass_stParaCong.uwAutoPowerOffTime = BIKE_AUTO_POWER_OFF_TIME;
  175. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  176. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  177. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  178. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  179. ass_stParaSet.uwStartUpGainStep = 25;
  180. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  181. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  182. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  183. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  184. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  185. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  186. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  187. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  188. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  189. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  190. ass_stParaSet.uwAsssistSelectNum = 1;
  191. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  192. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  193. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  194. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  195. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  196. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  197. }
  198. /**
  199. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  200. *
  201. * @param coef polynomial coefficient a, b, c, d
  202. * @param Value polynomial input value X
  203. * @param Qnum polynomial input Q type
  204. * @return UWORD polynomial output Y
  205. */
  206. LPF_OUT ass_pvt_stCurLpf;
  207. void ass_voAssitCoef(void)
  208. {
  209. /*状态机初始化*/
  210. Ass_FSM = StopAssit;
  211. /*电机限制初始化*/
  212. ass_stParaCong.uwCofCurMaxPu = (((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE); // Q14
  213. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  214. ass_stParaCong.uwCofTorMaxPu = (((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  215. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  216. /*速度环参数初始化*/
  217. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  218. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  219. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  220. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  221. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  222. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  223. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  224. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  225. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  226. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  227. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  228. /*电流限幅计算*/
  229. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  230. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  231. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  232. ass_stCurLimCalBMSCoef.swIqLImitK =
  233. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  234. /*助力曲线初始化*/
  235. ass_voAssistModeSelect();
  236. /*助力启动阈值初始化*/
  237. ass_stCalCoef.uwAssThreshold = ((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE; // Q14
  238. ass_stCalCoef.uwAssStopThreshold = ((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE; // Q14;
  239. /*助力系数初始化*/
  240. ass_stCalCoef.StartFlag = 0;
  241. ass_stCalCoef.swSmoothGain = 0; // Q12
  242. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  243. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  244. if (ass_stCalCoef.uwStartUpGainAddStep < 1)
  245. {
  246. ass_stCalCoef.uwStartUpGainAddStep = 1;
  247. }
  248. if (ass_stCalCoef.uwStartUpGainAddStep > 50)
  249. {
  250. ass_stCalCoef.uwStartUpGainAddStep = 50;
  251. }
  252. /*设置启动到正常助力最少踏频数*/
  253. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  254. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  255. {
  256. ass_stCalCoef.uwStartUpTimeCadenceCnt = (CADENCE_NUMBERS_PULSES >> 3);
  257. }
  258. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  259. {
  260. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  261. }
  262. /*设置滑动平均滤波踏频数*/
  263. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  264. ass_stCalCoef.swCadanceGain = 0;
  265. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  266. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  267. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  268. /*初始化计数*/
  269. ass_stCalCoef.uwCadencePeriodCNT = 0;
  270. ass_stCalCoef.swCadanceCNT = 0;
  271. ass_stCalCoef.sw2StopCNT = 0;
  272. ass_stCalCoef.swAss2SpdCNT = 0;
  273. /*配置速度环参数*/
  274. ass_stCalCoef.uwSpeedConstantCommand = (((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  275. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  276. ass_stCalCoef.swSpeedlimtrpm = -100;
  277. ass_stCalCoef.swBikeSpeedGain = 0;
  278. /*设置电流限幅*/
  279. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  280. ass_stCalCoef.swCurrentmax_torAssPu =((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwTorWeight) >> 12; // Q14
  281. ass_stCalCoef.swCurrentmax_cadAssPu = ((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwCadenceWeight )>> 12; // Q14
  282. /*初始化标志*/
  283. ass_stCalCoef.blAssistflag = FALSE;
  284. ass_stCalOut.swTorAssistSum1 = 0;
  285. ass_stCalOut.swTorAssistSum2 = 0;
  286. ass_stCalOut.swTorAss2CurrentTemp = 0;
  287. ass_stCalOut.swCadAss2CurrentTemp = 0;
  288. ass_stCalOut.swTorAssistCurrentTemp = 0;
  289. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  290. ass_stCalOut.swTorAssistCurrent = 0;
  291. ass_stCalOut.swSpeedRef = 0;
  292. ass_stCalOut.swCadSpd2MotSpd = 0;
  293. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  294. ass_stCurLimCoef.uwLimitGain[1] = 400;
  295. ass_stCurLimCoef.uwLimitGain[2] = 682;
  296. ass_stCurLimCoef.uwLimitGain[3] = 910;
  297. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  298. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  299. ass_stCurLimCoef.uwSpdThresHold = 21845;
  300. /*设置车速限幅*/
  301. // ass_stCurLimCoef.uwBikeSpdThresHold1 = ((SQWORD)10000 << 30) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  302. // ((SQWORD)36 * 3216 * ass_stParaCong.uwWheelPerimeter * FBASE); // Q20 3216 = Q10(3.1415926)
  303. // ass_stCurLimCoef.uwBikeSpdThresHold2 =
  304. // ((SQWORD)10000 << 30) * ass_stParaSet.uwAssistLimitBikeSpdStop / ((SQWORD)36 * 3216 * ass_stParaCong.uwWheelPerimeter * FBASE);
  305. ass_stCurLimCoef.uwBikeSpdThresHold1 = ((SQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  306. ((SQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE); // Q20 3216 = Q10(3.1415926)
  307. ass_stCurLimCoef.uwBikeSpdThresHold2 = ((SQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  308. ((SQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE); // Q20 3216 = Q10(3.1415926)
  309. ass_stCurLimCoef.ulBikeSpdDeltInv = ((SQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1); // Q20;
  310. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  311. (((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu; // Q28-q14 = Q14;
  312. /*设置转矩电流标定系数*/
  313. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  314. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  315. ass_Tor2CurCalCoef.swCalCoefINV =
  316. (((SLONG)1 << 7) * 1000 * 1000) /
  317. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  318. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  319. ass_pvt_stCurLpf.slY.sl = 0;
  320. }
  321. /**
  322. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  323. *
  324. * @param coef polynomial coefficient a, b, c, d
  325. * @param Value polynomial input value X
  326. * @param Qnum polynomial input Q type
  327. * @return UWORD polynomial output Y
  328. */
  329. void ass_voAssitTorqPIInit(void)
  330. {
  331. ass_stTorqPIOut.slIRefPu = 0;
  332. ass_stTorqPIOut.swErrZ1Pu = 0;
  333. ass_stTorqPIOut.swIRefPu = 0;
  334. }
  335. void ass_voAssitTorqPI(ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  336. {
  337. SLONG slErrPu, slDeltaErrPu;
  338. SLONG slIpPu, slIiPu;
  339. SLONG slImaxPu, slIminPu;
  340. SQWORD sqIRefPu, sqIpPu;
  341. UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  342. // uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  343. // uwKitPu = ass_stParaSet.uwStartUpCadNm;
  344. slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  345. slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  346. slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  347. if (slErrPu > 32767)
  348. {
  349. slErrPu = 32767;
  350. }
  351. else if (slErrPu < -32768)
  352. {
  353. slErrPu = -32768;
  354. }
  355. else
  356. {
  357. /* Nothing */
  358. }
  359. //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  360. slDeltaErrPu = slErrPu;
  361. if (slDeltaErrPu > 32767)
  362. {
  363. slDeltaErrPu = 32767;
  364. }
  365. else if (slDeltaErrPu < -32768)
  366. {
  367. slDeltaErrPu = -32768;
  368. }
  369. else
  370. {
  371. /* Nothing */
  372. }
  373. slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  374. sqIpPu = (SQWORD)slIpPu << 3;
  375. slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  376. //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  377. sqIRefPu = sqIpPu;
  378. if (sqIRefPu > slImaxPu)
  379. {
  380. out->slIRefPu = slImaxPu;
  381. }
  382. else if (sqIRefPu < slIminPu)
  383. {
  384. out->slIRefPu = slIminPu;
  385. }
  386. else
  387. {
  388. out->slIRefPu = sqIRefPu;
  389. }
  390. out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  391. out->swErrZ1Pu = (SWORD)slErrPu;
  392. }
  393. SWORD ass_pvt_swVoltCnt=0;
  394. UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  395. static void AssitCuvApplPerVolt(void)
  396. {
  397. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  398. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  399. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  400. SWORD swTmpSpdtoTorqCur;
  401. SLONG slTmpSmoothCur;
  402. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  403. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  404. SWORD swCurSwitch = 0;
  405. SWORD swTmpVoltPu,swTmpVoltPu2;
  406. SLONG slSpdErr,slTmpVoltLim;
  407. SWORD swSpdKpPu = 500; //Q10
  408. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  409. UWORD uwTmpStopCnt = 0;
  410. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  411. /* Select Torq Growth Rate by Bike Gear */
  412. if (ass_stCalIn.uwGearSt == 1)
  413. {
  414. uwTorqAccStep = 50;
  415. }
  416. else if(ass_stCalIn.uwGearSt == 2)
  417. {
  418. uwTorqAccStep = 100;
  419. }
  420. else if(ass_stCalIn.uwGearSt == 3)
  421. {
  422. uwTorqAccStep = 120;
  423. }
  424. else if(ass_stCalIn.uwGearSt == 4)
  425. {
  426. uwTorqAccStep = 150;
  427. }
  428. else if(ass_stCalIn.uwGearSt == 5)
  429. {
  430. uwTorqAccStep = 150;
  431. }
  432. else
  433. {
  434. }
  435. uwTorqDecStep = 80;
  436. /* Select TorqRef: LPFTorq or MAFTorq */
  437. swTorqCmd1 = ((ULONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  438. ((ULONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  439. swTorqCmd = ((ULONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12; //转矩指令斜坡
  440. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  441. {
  442. swTorqCmd = ass_stParaCong.uwBikeAssTorMaxPu;
  443. }
  444. /* Assist torque Cal using Assist Curve */
  445. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  446. if(ass_stCalIn.uwGearSt == 5)
  447. {
  448. slTeTorAssitLinerPu = (SLONG)(((swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273);
  449. }
  450. else
  451. {
  452. slTeTorAssitLinerPu = (SLONG)(((swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273);
  453. }
  454. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  455. {
  456. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  457. }
  458. else
  459. {
  460. //do nothing;
  461. }
  462. swCadCmd = (((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12)*10; // 踏频指令斜坡
  463. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  464. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  465. {
  466. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  467. }
  468. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  469. {
  470. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  471. }
  472. /* Select Assist Percent of Torq and Candence*/
  473. swTeTorAssitPu1 = (((SLONG)slTeTorAssitTmpPu) * ass_stParaSet.uwTorAssAjstGain) >> 12; // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  474. swTeCadAssitPu1 = (((SLONG)slTeCadAssitTmpPu) * ass_stParaSet.uwCadenceAssAjstGain) >> 12; // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  475. ass_stCalOut.swTorAssistSum1 = (swTeTorAssitPu1 + swTeCadAssitPu1); // Q14
  476. /* Candance Speed to Motor Speed*/
  477. ass_stCalOut.swCadSpd2MotSpd =
  478. ((SLONG)ass_stCalIn.uwcadance * ass_stParaCong.uwMechRationMotor * ass_stParaCong.uwMotorPoles) >> 5; // Q20-Q5= Q15 出力时电机转速计算
  479. ass_stCalCoef.uwCadencePeriodCNT = TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE)); //一圈踏频时间计数
  480. /* Back EMF Cal */
  481. swTmpVoltPu = (SLONG)ass_stCalOut.swCadSpd2MotSpd *(SLONG)cof_uwFluxPu >> 13;//Q15+Q12-Q13=Q14;
  482. swTmpVoltPu2 = (SLONG)ass_stCalIn.uwSpdFbkAbsPu*(SLONG)cof_uwFluxPu >> 13;//Q15+Q12-Q13=Q14;
  483. if (swTmpVoltPu < swTmpVoltPu2)
  484. {
  485. swTmpVoltPu = swTmpVoltPu2;
  486. }
  487. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  488. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  489. /* Assist FSM Control */
  490. switch (Ass_FSM)
  491. {
  492. case Startup:
  493. // ass_stCalCoef.swSmoothGain = Q12_1;
  494. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  495. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  496. {
  497. ass_stCalCoef.swSmoothGain = Q12_1;
  498. }
  499. swSpdKpPu = 2000; //ass_stParaSet.uwStartUpCadNm;
  500. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  501. if(slSpdErr < 0)
  502. {
  503. slSpdErr = 0;
  504. }
  505. // ass_stCalCoef.StartFlag = 1;
  506. /* Open Voltage Limit according SpdErr*/
  507. if(ass_stCalCoef.StartFlag == 0)
  508. {
  509. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  510. if(slTmpVoltLim > scm_swVsDcpLimPu)
  511. {
  512. slTmpVoltLim = scm_swVsDcpLimPu;
  513. }
  514. else if(slTmpVoltLim <= swTmpVoltPu)
  515. {
  516. slTmpVoltLim = swTmpVoltPu;
  517. }
  518. else
  519. {
  520. }
  521. ass_stCalOut.swVoltLimitPu = slTmpVoltLim;
  522. if(slSpdErr <= 1000)
  523. {
  524. ass_stCalCoef.StartFlag = 1;
  525. }
  526. }
  527. else if(ass_stCalCoef.StartFlag ==1 )
  528. {
  529. if(ass_stCalOut.swVoltLimitPu < (scm_swVsDcpLimPu - uwVoltAccStep))
  530. {
  531. ass_stCalOut.swVoltLimitPu += uwVoltAccStep;//ass_stCalCoef.uwStartUpGainAddStep;
  532. }
  533. else
  534. {
  535. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  536. }
  537. if(slSpdErr <= 100)
  538. {
  539. ass_pvt_swVoltCnt++;
  540. }
  541. else
  542. {
  543. ass_pvt_swVoltCnt--;
  544. if(ass_pvt_swVoltCnt < 0)
  545. {
  546. ass_pvt_swVoltCnt = 0;
  547. }
  548. }
  549. /* Switch to TorqueAssit FSM */
  550. if(ass_pvt_swVoltCnt > 30)
  551. {
  552. Ass_FSM = TorqueAssit;
  553. ass_stCalCoef.StartFlag=0;
  554. ass_pvt_swVoltCnt=0;
  555. }
  556. }
  557. /* Switch to ReduceCurrent FSM */
  558. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0))
  559. {
  560. /* When CandanceFreq=0 or BikeGear=0*/
  561. ass_stCalCoef.swAss2SpdCNT = 0;
  562. Ass_FSM = ReduceCurrent;
  563. }
  564. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  565. {
  566. ass_stCalCoef.swAss2SpdCNT++;
  567. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  568. if(uwTmpStopCnt < 300)
  569. {
  570. uwTmpStopCnt = 300;
  571. }
  572. else if(uwTmpStopCnt > 1000)
  573. {
  574. uwTmpStopCnt = 1000;
  575. }
  576. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  577. {
  578. ass_stCalCoef.swAss2SpdCNT = 0;
  579. Ass_FSM = ReduceCurrent;
  580. }
  581. }
  582. else
  583. {
  584. ass_stCalCoef.swAss2SpdCNT = 0;
  585. }
  586. break;
  587. case TorqueAssit:
  588. /* 启动系数 */
  589. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  590. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  591. {
  592. ass_stCalCoef.swSmoothGain = Q12_1;
  593. }
  594. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  595. // if(ass_stCalIn.uwtorquelpf >= ass_stCalCoef.uwSwitch1TorqThreshold)
  596. // {
  597. ass_stCalOut.swVoltLimitPu += uwVoltAccStep; //ass_stCalCoef.uwStartUpGainAddStep;
  598. // }
  599. // else if (ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  600. // {
  601. // ass_stCalOut.swVoltLimitPu -= uwVoltDecStep; //ass_stCalCoef.uwSpeedConstantCommand;
  602. // }
  603. // else
  604. // {
  605. // }
  606. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  607. {
  608. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  609. }
  610. // else if (ass_stCalOut.swVoltLimitPu <= (swTmpVoltPu + ass_stParaSet.uwStartUpCadNm))
  611. // {
  612. // ass_stCalOut.swVoltLimitPu = swTmpVoltPu + ass_stParaSet.uwStartUpCadNm;
  613. // }
  614. /* TorqueRef Select Coef */
  615. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  616. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  617. {
  618. ass_stCalCoef.swTorqFilterGain = Q14_1;
  619. }
  620. /* Switch to ReduceCurrent FSM */
  621. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0))
  622. {
  623. /* When CandanceFreq=0 or BikeGear=0*/
  624. ass_stCalOut.blTorqPIFlg = FALSE;
  625. ass_stCalCoef.swAss2SpdCNT = 0;
  626. Ass_FSM = ReduceCurrent;
  627. }
  628. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  629. {
  630. ass_stCalCoef.swAss2SpdCNT++;
  631. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  632. if(uwTmpStopCnt < 300)
  633. {
  634. uwTmpStopCnt = 300;
  635. }
  636. else if(uwTmpStopCnt > 1000)
  637. {
  638. uwTmpStopCnt = 1000;
  639. }
  640. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  641. {
  642. ass_stCalCoef.swAss2SpdCNT = 0;
  643. ass_stCalOut.blTorqPIFlg = FALSE;
  644. Ass_FSM = ReduceCurrent;
  645. }
  646. }
  647. else
  648. {
  649. ass_stCalCoef.swAss2SpdCNT = 0;
  650. }
  651. break;
  652. case ReduceCurrent:
  653. /* Switch to StopAssit FSM */
  654. if(ass_stCalCoef.swSmoothGain <= 0)
  655. {
  656. ass_stCalCoef.swSmoothGain = 0;
  657. ass_stCalCoef.swTorqFilterGain = 0;
  658. ass_stCalCoef.swCadanceGain = 0;
  659. Ass_FSM = StopAssit;
  660. }
  661. else
  662. {
  663. /* Reduce Curret Coef to Zero*/
  664. ass_stCalCoef.swSmoothGain -=40;
  665. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  666. }
  667. /* Switch to Startup FSM */
  668. if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  669. {
  670. Ass_FSM = Startup;
  671. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  672. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  673. }
  674. break;
  675. case StopAssit:
  676. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  677. /* Switch to Startup FSM */
  678. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  679. {
  680. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  681. {
  682. ass_stCalCoef.sw2StopCNT = 0;
  683. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  684. ass_pvt_stCurLpf.slY.sw.hi = 0;
  685. Ass_FSM = Startup;
  686. }
  687. }
  688. else
  689. {
  690. if (ass_stCalIn.uwtorquelpf > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  691. {
  692. ass_stCalCoef.sw2StopCNT = 0;
  693. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  694. ass_pvt_stCurLpf.slY.sw.hi = 0;
  695. Ass_FSM = Startup;
  696. }
  697. }
  698. /* Assit Exit */
  699. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  700. {
  701. ass_stCalCoef.sw2StopCNT++;
  702. }
  703. else
  704. {
  705. if (ass_stCalCoef.sw2StopCNT >= 1)
  706. {
  707. ass_stCalCoef.sw2StopCNT--;
  708. }
  709. }
  710. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0))// 3s
  711. {
  712. ass_stCalCoef.sw2StopCNT = 0;
  713. ass_stCalCoef.blAssistflag = FALSE;
  714. }
  715. break;
  716. default:
  717. break;
  718. }
  719. /* Bikespeed Limit */
  720. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  721. {
  722. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  723. }
  724. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  725. {
  726. ass_stCalCoef.swBikeSpeedGain =
  727. Q12_1 -
  728. ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8); // Q12
  729. uwTorqAccStep = 10;
  730. uwTorqDecStep = 10;
  731. }
  732. else
  733. {
  734. ass_stCalCoef.swBikeSpeedGain = 0;
  735. uwTorqAccStep = 10;
  736. uwTorqDecStep = 10;
  737. }
  738. /* Assist Current Output in each FSM */
  739. switch (Ass_FSM)
  740. {
  741. case Startup:
  742. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  743. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  744. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  745. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  746. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  747. {
  748. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  749. }
  750. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  751. {
  752. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  753. }
  754. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  755. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  756. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  757. break;
  758. case TorqueAssit:
  759. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  760. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  761. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  762. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  763. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  764. {
  765. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  766. }
  767. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  768. {
  769. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  770. }
  771. #if CURSWITCH
  772. /* Ajust CurrentRef growth and decline rate */
  773. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  774. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  775. {
  776. ass_pvt_uwTorqAccCnt++;
  777. if(ass_pvt_uwTorqAccCnt >= 2)
  778. {
  779. ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  780. ass_pvt_uwTorqAccCnt = 0;
  781. }
  782. }
  783. else if(((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < (-1)))
  784. {
  785. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  786. {
  787. ass_stCalOut.swTorRefEnd -= uwTorqDecStep;
  788. }
  789. // ass_pvt_uwTorqDecCnt++;
  790. // if(ass_pvt_uwTorqDecCnt >= 10)
  791. // {
  792. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  793. // ass_pvt_uwTorqDecCnt = 0;
  794. // }
  795. }
  796. else
  797. {
  798. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  799. }
  800. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  801. /* Torq Clzloop Test */
  802. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  803. // {
  804. // if(!ass_stCalOut.blTorqPIFlg)
  805. // {
  806. // /* Initial value */
  807. // ass_stTorqPIOut.slIRefPu = 0;
  808. // swCurSwitch = abs(ass_stCalOut.swTorRefTarget); //abs(ass_stCalOut.swAssitCurRef);
  809. // ass_stCalOut.blTorqPIFlg = TRUE;
  810. // }
  811. //
  812. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  813. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  814. // ass_stTorqPIIn.swImaxPu = 0;
  815. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  816. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  817. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  818. // }
  819. // else
  820. // {
  821. // ass_stCalOut.blTorqPIFlg = FALSE;
  822. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  823. // }
  824. #else
  825. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  826. #endif
  827. break;
  828. case ReduceCurrent:
  829. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  830. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  831. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  832. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  833. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  834. {
  835. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  836. }
  837. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  838. {
  839. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  840. }
  841. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  842. break;
  843. case StopAssit:
  844. ass_stCalOut.swTorAssistCurrentTemp = 0;
  845. ass_stCalOut.swTorRefEnd = 0;
  846. break;
  847. default:
  848. break;
  849. }
  850. /* Assist Iqref Output */
  851. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  852. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  853. /* Bikespeed Limit Coef*/
  854. ass_stCalOut.swAssitCurRef = ((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain) >> 12;
  855. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  856. }
  857. /**
  858. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  859. *
  860. * @param coef polynomial coefficient a, b, c, d
  861. * @param Value polynomial input value X
  862. * @param Qnum polynomial input Q type
  863. * @return UWORD polynomial output Y
  864. */
  865. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  866. {
  867. /* Limit the Output Current according to Bike Gear */
  868. UWORD uwuwIqLimitTemp1;
  869. uwuwIqLimitTemp1 = ((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10;
  870. ass_stCurLimOut.uwIqlimit = uwuwIqLimitTemp1;
  871. }
  872. /**
  873. * @brief
  874. *
  875. * @param
  876. * @return
  877. */
  878. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  879. {
  880. /* Limit the Output Current according to Bike SOC */
  881. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  882. {
  883. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  884. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - (((SLONG)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  885. }
  886. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  887. {
  888. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  889. }
  890. else
  891. {
  892. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  893. }
  894. }
  895. /**
  896. * @brief Assist function
  897. *
  898. * @param coef polynomial coefficient a, b, c, d
  899. * @param Value polynomial input value X
  900. * @param Qnum polynomial input Q type
  901. * @return UWORD polynomial output Y
  902. */
  903. void ass_voAssist(void)
  904. {
  905. /* Start Assist Jduge */
  906. if (((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) || ass_stCalIn.uwtorquePer > 3000) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  907. {
  908. ass_stCalCoef.blAssistflag = TRUE;
  909. }
  910. if (ass_stCalCoef.blAssistflag == TRUE)
  911. {
  912. /* Calculate Iqref Limit */
  913. UWORD uwIqLimitTemp;
  914. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  915. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  916. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  917. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  918. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  919. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  920. ass_stCalCoef.swCurrentmax_torAssPu = ((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwTorWeight) >> 12; // Q14
  921. ass_stCalCoef.swCurrentmax_cadAssPu = ((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwCadenceWeight) >> 12;
  922. /* Calculate Assist Current, Iqref*/
  923. AssitCuvApplPerVolt();
  924. /* Iqref Limit */
  925. if (ass_stCalOut.swAssitCurRef > ass_stCalCoef.uwCurrentMaxPu)
  926. {
  927. ass_stCalOut.swAssitCurRef = ass_stCalCoef.uwCurrentMaxPu;
  928. }
  929. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  930. {
  931. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  932. }
  933. else
  934. {}
  935. }
  936. else
  937. {
  938. ass_stCalOut.swAssitCurRef = 0;
  939. }
  940. }
  941. /**
  942. * @brief
  943. *
  944. * @param
  945. * @return
  946. */
  947. void ass_voMoveAverageFilter(MAF_IN *in)
  948. {
  949. in->slSum -= in->swBuffer[in->uwIndex];
  950. in->swBuffer[in->uwIndex] = in->swValue;
  951. in->slSum += (SQWORD)in->swValue;
  952. if (!in->blSecFlag)
  953. {
  954. in->slAverValue = (SLONG)(in->slSum / (in->uwIndex + 1));
  955. }
  956. else
  957. {
  958. in->slAverValue = (SLONG)(in->slSum / in->uwLength);
  959. }
  960. in->uwIndex++;
  961. if (in->uwIndex >= in->uwLength)
  962. {
  963. in->blSecFlag = TRUE;
  964. in->uwIndex = 0;
  965. }
  966. }
  967. void ass_voMoveAverageFilterClear(MAF_IN *in)
  968. {
  969. UWORD i;
  970. in->uwIndex = 0;
  971. in->slSum = 0;
  972. in->blSecFlag = FALSE;
  973. for (i = 0; i < 64; i++)
  974. {
  975. in->swBuffer[i] = 0;
  976. }
  977. }