AssistCurve.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. /******************************
  24. *
  25. * Parameter
  26. *
  27. ******************************/
  28. ASS_FSM_STATUS Ass_FSM;
  29. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  30. ASS_PER_COEF ass_stCalCoef;
  31. ASS_PER_OUT ass_stCalOut;
  32. ASS_PARA_CONFIGURE ass_stParaCong;
  33. ASS_PARA_SET ass_stParaSet;
  34. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  35. ASS_CURLIM_OUT ass_stCurLimOut;
  36. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  37. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  38. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  39. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  40. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  41. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  42. ASS_TORQ_PI_IN ass_stTorqPIIn;
  43. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  44. SWORD ass_swTorqMafBuf[64];
  45. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  46. SWORD ass_swUqLimMafBuf[64];
  47. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  48. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  49. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  50. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  51. static SWORD ass_pvt_swVoltCnt=0;
  52. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  53. static UWORD AssCnt1ms;
  54. static UWORD ass_pvt_uwSmoothFlg = 0;
  55. /******************************
  56. *
  57. * Function
  58. *
  59. ******************************/
  60. /**
  61. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  62. *
  63. * @param coef polynomial coefficient a, b, c, d
  64. * @param Value polynomial input value X
  65. * @param Qnum polynomial input Q type
  66. * @return UWORD polynomial output Y
  67. */
  68. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  69. {
  70. SLONG out;
  71. SLONG temp_a, temp_b, temp_c;
  72. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  73. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  74. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  75. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  76. out = temp_a + temp_b + temp_c + coef->d;
  77. out = (SLONG)out;
  78. return out;
  79. }
  80. /**
  81. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  82. *
  83. * @param coef original point coefficient z, h, k
  84. * @return POLY_COEF a, b, c, d
  85. */
  86. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  87. //{
  88. // POLY_COEF out;
  89. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  90. // out.a = (SQWORD)0; // Q12
  91. // out.b = (SQWORD)coef->z; // Q12
  92. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  93. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  94. // return out;
  95. //}
  96. /**
  97. * @brief Torque to Current when Id = 0;
  98. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  99. * @param coef polynomial coefficient a, b, c, d
  100. * @param Value polynomial input value X
  101. * @param Qnum polynomial input Q type
  102. * @return UWORD polynomial output Y
  103. */
  104. static SWORD ass_swTorq2CurPu(SWORD Tor)
  105. {
  106. SWORD swCurrentPu;
  107. SWORD swMotorTorqueNotPu;
  108. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  109. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  110. return swCurrentPu;
  111. }
  112. /**
  113. * @brief
  114. *
  115. * @param
  116. * @return
  117. */
  118. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  119. {
  120. UWORD TempAssit;
  121. UWORD TempGear, gear;
  122. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  123. // {
  124. // TempAssit = ass_stParaCong.uwAssistSelect1;
  125. // }
  126. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  127. // {
  128. // TempAssit = ass_stParaCong.uwAssistSelect2;
  129. // }
  130. // else
  131. // {
  132. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  133. // }
  134. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  135. {
  136. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  137. }
  138. else if (ass_stParaCong.uwStartMode == 2)
  139. {
  140. TempAssit = ass_stParaCong.uwAssistSelect1;
  141. }
  142. else if (ass_stParaCong.uwStartMode == 3)
  143. {
  144. TempAssit = ass_stParaCong.uwAssistSelect2;
  145. }
  146. else
  147. {
  148. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  149. }
  150. SLONG slTorqGainSum =0;
  151. for(UWORD i = 0; i < 4; i++)
  152. {
  153. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  154. }
  155. if(slTorqGainSum == 0)
  156. {
  157. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  158. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  159. UWORD a ;
  160. a =sizeof( slTorqAssGain);
  161. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  162. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  163. }
  164. for (gear = 0; gear < 5; gear++)
  165. {
  166. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  167. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  168. }
  169. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  170. }
  171. /**
  172. * @brief Para from EE Init
  173. *
  174. * @param void
  175. * @return void
  176. */
  177. void ass_voAssitEEInit(void)
  178. {
  179. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  180. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  181. ass_stParaCong.uwMechRationMotor = 35; // Q0
  182. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  183. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  184. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  185. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  186. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  187. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  188. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_PARA;
  189. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  190. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  191. ass_stParaCong.uwAutoPowerOffTime = BIKE_POWER_PARA;
  192. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  193. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  194. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  195. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  196. ass_stParaSet.uwStartUpGainStep = 25;
  197. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  198. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  199. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  200. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  201. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  202. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  203. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  204. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  205. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  206. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  207. ass_stParaSet.uwAsssistSelectNum = 1;
  208. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  209. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  210. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  211. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  212. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  213. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  214. /* 函数私有变量初始化 */
  215. ass_pvt_swVoltCnt = 0;
  216. ass_pvt_uwTorqAccCnt = 0;
  217. ass_pvt_uwTorqDecCnt = 0;
  218. ass_pvt_uwSpd2TorqCnt = 0;
  219. ass_pvt_uwSmoothFlg = 0;
  220. AssCnt1ms = 0;
  221. }
  222. /**
  223. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  224. *
  225. * @param coef polynomial coefficient a, b, c, d
  226. * @param Value polynomial input value X
  227. * @param Qnum polynomial input Q type
  228. * @return UWORD polynomial output Y
  229. */
  230. LPF_OUT ass_pvt_stCurLpf;
  231. void ass_voAssitCoef(void)
  232. {
  233. /*状态机初始化*/
  234. Ass_FSM = StopAssit;
  235. /*电机限制初始化*/
  236. ass_stParaCong.uwCofCurMaxPu = ((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE; // Q14
  237. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  238. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  239. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  240. /*速度环参数初始化*/
  241. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  242. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  243. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  244. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  245. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  246. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  247. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  248. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  249. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  250. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  251. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  252. /*电流限幅计算*/
  253. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  254. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  255. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  256. ass_stCurLimCalBMSCoef.swIqLImitK =
  257. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  258. /*助力曲线初始化*/
  259. ass_voAssistModeSelect();
  260. /*助力启动阈值初始化*/
  261. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  262. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  263. /*助力系数初始化*/
  264. ass_stCalCoef.StartFlag = 0;
  265. ass_stCalCoef.swSmoothGain = 0; // Q12
  266. ass_stCalCoef.swSmoothStopGain = 4096; //Q12
  267. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  268. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  269. /*设置启动到正常助力最少踏频数*/
  270. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  271. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  272. {
  273. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  274. }
  275. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  276. {
  277. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  278. }
  279. /*设置滑动平均滤波踏频数*/
  280. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  281. ass_stCalCoef.swCadanceGain = 0;
  282. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  283. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  284. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  285. /*初始化计数*/
  286. ass_stCalCoef.uwCadencePeriodCNT = 0;
  287. ass_stCalCoef.swCadanceCNT = 0;
  288. ass_stCalCoef.sw2StopCNT = 0;
  289. ass_stCalCoef.swAss2SpdCNT = 0;
  290. /*配置速度环参数*/
  291. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  292. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  293. ass_stCalCoef.swSpeedlimtrpm = -100;
  294. ass_stCalCoef.swBikeSpeedGain = 0;
  295. /*设置电流限幅*/
  296. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  297. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  298. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  299. /*初始化标志*/
  300. ass_stCalCoef.blAssistflag = FALSE;
  301. ass_stCalOut.swTorAssistSum1 = 0;
  302. ass_stCalOut.swTorAssistSum2 = 0;
  303. ass_stCalOut.swTorAss2CurrentTemp = 0;
  304. ass_stCalOut.swCadAss2CurrentTemp = 0;
  305. ass_stCalOut.swTorAssistCurrentTemp = 0;
  306. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  307. ass_stCalOut.swTorAssistCurrent = 0;
  308. ass_stCalOut.swSpeedRef = 0;
  309. ass_stCalOut.swCadSpd2MotSpd = 0;
  310. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  311. ass_stCurLimCoef.uwLimitGain[1] = 400;
  312. ass_stCurLimCoef.uwLimitGain[2] = 682;
  313. ass_stCurLimCoef.uwLimitGain[3] = 910;
  314. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  315. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  316. ass_stCurLimCoef.uwSpdThresHold = 21845;
  317. /*设置车速限幅*/
  318. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  319. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  320. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  321. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  322. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  323. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  324. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  325. /*设置转矩电流标定系数*/
  326. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  327. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  328. ass_Tor2CurCalCoef.swCalCoefINV =
  329. (((SLONG)1 << 7) * 1000 * 1000) /
  330. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  331. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  332. ass_pvt_stCurLpf.slY.sl = 0;
  333. }
  334. /**
  335. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  336. *
  337. * @param coef polynomial coefficient a, b, c, d
  338. * @param Value polynomial input value X
  339. * @param Qnum polynomial input Q type
  340. * @return UWORD polynomial output Y
  341. */
  342. //void ass_voAssitTorqPIInit(void)
  343. //{
  344. // ass_stTorqPIOut.slIRefPu = 0;
  345. // ass_stTorqPIOut.swErrZ1Pu = 0;
  346. // ass_stTorqPIOut.swIRefPu = 0;
  347. //}
  348. //
  349. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  350. //{
  351. // SLONG slErrPu, slDeltaErrPu;
  352. // SLONG slIpPu, slIiPu;
  353. // SLONG slImaxPu, slIminPu;
  354. // SQWORD sqIRefPu, sqIpPu;
  355. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  356. //
  357. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  358. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  359. //
  360. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  361. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  362. //
  363. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  364. //
  365. // if (slErrPu > 32767)
  366. // {
  367. // slErrPu = 32767;
  368. // }
  369. // else if (slErrPu < -32768)
  370. // {
  371. // slErrPu = -32768;
  372. // }
  373. // else
  374. // {
  375. // /* Nothing */
  376. // }
  377. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  378. // slDeltaErrPu = slErrPu;
  379. // if (slDeltaErrPu > 32767)
  380. // {
  381. // slDeltaErrPu = 32767;
  382. // }
  383. // else if (slDeltaErrPu < -32768)
  384. // {
  385. // slDeltaErrPu = -32768;
  386. // }
  387. // else
  388. // {
  389. // /* Nothing */
  390. // }
  391. //
  392. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  393. // sqIpPu = (SQWORD)slIpPu << 3;
  394. //
  395. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  396. //
  397. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  398. // sqIRefPu = sqIpPu;
  399. //
  400. // if (sqIRefPu > slImaxPu)
  401. // {
  402. // out->slIRefPu = slImaxPu;
  403. // }
  404. // else if (sqIRefPu < slIminPu)
  405. // {
  406. // out->slIRefPu = slIminPu;
  407. // }
  408. // else
  409. // {
  410. // out->slIRefPu = sqIRefPu;
  411. // }
  412. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  413. // out->swErrZ1Pu = (SWORD)slErrPu;
  414. //}
  415. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  416. {
  417. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  418. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  419. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  420. SWORD swTmpSpdtoTorqCur;
  421. SLONG slTmpSmoothCur;
  422. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  423. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  424. SWORD swCurSwitch = 0;
  425. SWORD swTmpVoltPu,swTmpVoltPu2;
  426. SLONG slSpdErr,slTmpVoltLim;
  427. SWORD swSpdKpPu = 500; //Q10
  428. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  429. UWORD uwTmpStopCnt = 0;
  430. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  431. /* Select Torq Growth Rate by Bike Gear */
  432. if (ass_stCalIn.uwGearSt == 1)
  433. {
  434. uwTorqAccStep = 50;
  435. }
  436. else if(ass_stCalIn.uwGearSt == 2)
  437. {
  438. uwTorqAccStep = 100;
  439. }
  440. else if(ass_stCalIn.uwGearSt == 3)
  441. {
  442. uwTorqAccStep = 120;
  443. }
  444. else if(ass_stCalIn.uwGearSt == 4)
  445. {
  446. uwTorqAccStep = 150;
  447. }
  448. else if(ass_stCalIn.uwGearSt == 5)
  449. {
  450. uwTorqAccStep = 150;
  451. }
  452. else
  453. {
  454. //do nothing
  455. }
  456. uwTorqDecStep = 80;
  457. AssCnt1ms ++;
  458. if(AssCnt1ms >= 10000)
  459. {
  460. AssCnt1ms = 0;
  461. }
  462. /* Select TorqRef: LPFTorq or MAFTorq */
  463. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  464. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  465. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  466. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  467. {
  468. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  469. }
  470. /* Assist torque Cal using Assist Curve */
  471. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  472. if(ass_stCalIn.uwGearSt == 5)
  473. {
  474. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  475. }
  476. else
  477. {
  478. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  479. }
  480. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  481. {
  482. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  483. }
  484. else
  485. {
  486. //do nothing;
  487. }
  488. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  489. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  490. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  491. {
  492. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  493. }
  494. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  495. {
  496. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  497. }
  498. /* Select Assist Percent of Torq and Candence*/
  499. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  500. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  501. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  502. /* Candance Speed to Motor Speed*/
  503. ass_stCalOut.swCadSpd2MotSpd =
  504. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  505. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  506. /* Back EMF Cal */
  507. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  508. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  509. if (swTmpVoltPu < swTmpVoltPu2)
  510. {
  511. swTmpVoltPu = swTmpVoltPu2;
  512. }
  513. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  514. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  515. /* Assist FSM Control */
  516. switch (Ass_FSM)
  517. {
  518. case Startup:
  519. /* 启动系数 */
  520. if(ass_pvt_uwSmoothFlg == 0)
  521. {
  522. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  523. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  524. {
  525. ass_pvt_uwSmoothFlg = 1;
  526. }
  527. }
  528. else if (ass_pvt_uwSmoothFlg == 1)
  529. {
  530. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  531. {
  532. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  533. }
  534. else
  535. {
  536. ass_stCalCoef.swSmoothGain = Q12_1;
  537. ass_pvt_uwSmoothFlg = 2;
  538. }
  539. }
  540. else
  541. {
  542. // do nothing
  543. }
  544. swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  545. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  546. if(slSpdErr < 0)
  547. {
  548. slSpdErr = 0;
  549. }
  550. // ass_stCalCoef.StartFlag = 1;
  551. /* Open Voltage Limit according SpdErr*/
  552. if(ass_stCalCoef.StartFlag == 0)
  553. {
  554. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  555. if(slTmpVoltLim > scm_swVsDcpLimPu)
  556. {
  557. slTmpVoltLim = scm_swVsDcpLimPu;
  558. }
  559. else if(slTmpVoltLim <= swTmpVoltPu)
  560. {
  561. slTmpVoltLim = swTmpVoltPu;
  562. }
  563. else
  564. {
  565. //do nothing
  566. }
  567. ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  568. /* 电机与踏频转速差小于阈值启动完成 */
  569. if(slSpdErr <= 1000)
  570. {
  571. ass_stCalCoef.StartFlag = 1;
  572. }
  573. /* 根据电流环饱和情况判断启动完成 */
  574. // if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  575. // {
  576. // ass_pvt_swVoltCnt++;
  577. // }
  578. // else
  579. // {
  580. // ass_pvt_swVoltCnt=0;
  581. // }
  582. // if(ass_pvt_swVoltCnt > 10)
  583. // {
  584. // ass_pvt_swVoltCnt=0;
  585. // ass_stCalCoef.StartFlag = 1;
  586. // }
  587. }
  588. else if(ass_stCalCoef.StartFlag ==1 )
  589. {
  590. if(0 == (AssCnt1ms%5))
  591. {
  592. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  593. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  594. {
  595. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  596. }
  597. }
  598. if(slSpdErr <= 100)
  599. {
  600. ass_pvt_swVoltCnt++;
  601. }
  602. else
  603. {
  604. ass_pvt_swVoltCnt--;
  605. if(ass_pvt_swVoltCnt < 0)
  606. {
  607. ass_pvt_swVoltCnt = 0;
  608. }
  609. }
  610. /* Switch to TorqueAssit FSM */
  611. if(ass_pvt_swVoltCnt > 30)
  612. {
  613. Ass_FSM = TorqueAssit;
  614. ass_stCalCoef.StartFlag=0;
  615. ass_pvt_swVoltCnt=0;
  616. }
  617. }
  618. else
  619. {
  620. //do nothing
  621. }
  622. /* Switch to ReduceCurrent FSM */
  623. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  624. {
  625. /* When CandanceFreq=0 or BikeGear=0*/
  626. ass_stCalCoef.swAss2SpdCNT = 0;
  627. Ass_FSM = ReduceCurrent;
  628. }
  629. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  630. {
  631. ass_stCalCoef.swAss2SpdCNT++;
  632. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_stCalIn.uwcadance * FBASE) ;
  633. if(uwTmpStopCnt < 200)
  634. {
  635. uwTmpStopCnt = 200;
  636. }
  637. else if(uwTmpStopCnt > 500)
  638. {
  639. uwTmpStopCnt = 500;
  640. }
  641. else
  642. {
  643. //do nothing
  644. }
  645. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  646. {
  647. Ass_FSM = ReduceCurrent;
  648. ass_stCalCoef.swAss2SpdCNT = 0;
  649. ass_stCalCoef.StartFlag=0;
  650. }
  651. }
  652. else
  653. {
  654. ass_stCalCoef.swAss2SpdCNT = 0;
  655. }
  656. break;
  657. case TorqueAssit:
  658. /* 启动系数 */
  659. if(ass_pvt_uwSmoothFlg == 0)
  660. {
  661. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  662. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  663. {
  664. ass_pvt_uwSmoothFlg = 1;
  665. }
  666. }
  667. else if (ass_pvt_uwSmoothFlg == 1)
  668. {
  669. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  670. {
  671. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  672. }
  673. else
  674. {
  675. ass_stCalCoef.swSmoothGain = Q12_1;
  676. ass_pvt_uwSmoothFlg = 2;
  677. }
  678. }
  679. else
  680. {
  681. // do nothing
  682. }
  683. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  684. if(0 == (AssCnt1ms%5))
  685. {
  686. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  687. // {
  688. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  689. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  690. {
  691. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  692. }
  693. // }
  694. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  695. // {
  696. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  697. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm))
  698. //// {
  699. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm;
  700. //// }
  701. // }
  702. // else
  703. // {
  704. // }
  705. }
  706. /* TorqueRef Select Coef */
  707. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  708. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  709. {
  710. ass_stCalCoef.swTorqFilterGain = Q14_1;
  711. }
  712. /* Switch to ReduceCurrent FSM */
  713. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  714. {
  715. /* When CandanceFreq=0 or BikeGear=0*/
  716. ass_stCalOut.blTorqPIFlg = FALSE;
  717. ass_stCalCoef.swAss2SpdCNT = 0;
  718. Ass_FSM = ReduceCurrent;
  719. }
  720. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  721. {
  722. ass_stCalCoef.swAss2SpdCNT++;
  723. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_stCalIn.uwcadance * FBASE) ;
  724. if(uwTmpStopCnt < 200)
  725. {
  726. uwTmpStopCnt = 200;
  727. }
  728. else if(uwTmpStopCnt > 500)
  729. {
  730. uwTmpStopCnt = 500;
  731. }
  732. else
  733. {
  734. //do nothing
  735. }
  736. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  737. {
  738. ass_stCalCoef.swAss2SpdCNT = 0;
  739. ass_stCalOut.blTorqPIFlg = FALSE;
  740. Ass_FSM = ReduceCurrent;
  741. }
  742. }
  743. else
  744. {
  745. ass_stCalCoef.swAss2SpdCNT = 0;
  746. }
  747. break;
  748. case ReduceCurrent:
  749. /* Switch to StopAssit FSM */
  750. if(ass_stCalCoef.swSmoothStopGain <= 0)
  751. {
  752. ass_pvt_uwSmoothFlg = 0;
  753. ass_stCalCoef.swSmoothGain = 0;
  754. ass_stCalCoef.swSmoothStopGain = 0;
  755. ass_stCalCoef.swTorqFilterGain = 0;
  756. ass_stCalCoef.swCadanceGain = 0;
  757. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  758. Ass_FSM = StopAssit;
  759. }
  760. else
  761. {
  762. /* Reduce Curret Coef to Zero*/
  763. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  764. ass_stCalCoef.swSmoothGain -= ass_stCalCoef.uwStartUpGainAddStep;
  765. ass_stCalCoef.swSmoothStopGain -= ass_stCalCoef.uwStartUpGainAddStep;
  766. }
  767. /* Switch to Startup FSM */
  768. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  769. // {
  770. // Ass_FSM = Startup;
  771. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  772. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  773. // }
  774. break;
  775. case StopAssit:
  776. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  777. /* Switch to Startup FSM */
  778. if ((BikeBrake_blGetstate() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  779. {
  780. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  781. {
  782. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  783. {
  784. ass_stCalCoef.sw2StopCNT = 0;
  785. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  786. ass_pvt_stCurLpf.slY.sw.hi = 0;
  787. ass_stCalCoef.swSmoothStopGain = Q12_1;
  788. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  789. Ass_FSM = Startup;
  790. }
  791. }
  792. else
  793. {
  794. if (ass_stCalIn.uwtorquePer > (ass_stCalCoef.uwAssThreshold >> 1) && ass_stCalIn.uwcadance > 0)
  795. {
  796. ass_stCalCoef.sw2StopCNT = 0;
  797. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  798. ass_pvt_stCurLpf.slY.sw.hi = 0;
  799. ass_stCalCoef.swSmoothStopGain = Q12_1;
  800. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  801. Ass_FSM = Startup;
  802. }
  803. }
  804. }
  805. /* Assit Exit */
  806. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  807. {
  808. ass_stCalCoef.sw2StopCNT++;
  809. }
  810. else
  811. {
  812. if (ass_stCalCoef.sw2StopCNT >= 1)
  813. {
  814. ass_stCalCoef.sw2StopCNT--;
  815. }
  816. }
  817. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE))// 3s
  818. {
  819. ass_stCalCoef.sw2StopCNT = 0;
  820. ass_stCalCoef.blAssistflag = FALSE;
  821. }
  822. break;
  823. default:
  824. break;
  825. }
  826. /* Bikespeed Limit */
  827. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  828. {
  829. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  830. }
  831. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  832. {
  833. ass_stCalCoef.swBikeSpeedGain =
  834. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  835. uwTorqAccStep = 10;
  836. uwTorqDecStep = 10;
  837. }
  838. else
  839. {
  840. ass_stCalCoef.swBikeSpeedGain = 0;
  841. uwTorqAccStep = 10;
  842. uwTorqDecStep = 10;
  843. }
  844. /* Assist Current Output in each FSM */
  845. switch (Ass_FSM)
  846. {
  847. case Startup:
  848. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  849. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  850. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  851. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  852. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  853. {
  854. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  855. }
  856. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  857. {
  858. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  859. }
  860. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  861. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  862. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  863. break;
  864. case TorqueAssit:
  865. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  866. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  867. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  868. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  869. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  870. {
  871. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  872. }
  873. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  874. {
  875. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  876. }
  877. #if CURSWITCH
  878. /* Ajust CurrentRef growth and decline rate */
  879. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  880. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  881. {
  882. ass_pvt_uwTorqAccCnt++;
  883. if(ass_pvt_uwTorqAccCnt >= 2)
  884. {
  885. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  886. ass_pvt_uwTorqAccCnt = 0;
  887. }
  888. }
  889. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  890. {
  891. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  892. {
  893. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  894. }
  895. // ass_pvt_uwTorqDecCnt++;
  896. // if(ass_pvt_uwTorqDecCnt >= 10)
  897. // {
  898. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  899. // ass_pvt_uwTorqDecCnt = 0;
  900. // }
  901. }
  902. else
  903. {
  904. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  905. }
  906. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  907. /* Torq Clzloop Test */
  908. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  909. // {
  910. // if(!ass_stCalOut.blTorqPIFlg)
  911. // {
  912. // /* Initial value */
  913. // ass_stTorqPIOut.slIRefPu = 0;
  914. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  915. // ass_stCalOut.blTorqPIFlg = TRUE;
  916. // }
  917. //
  918. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  919. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  920. // ass_stTorqPIIn.swImaxPu = 0;
  921. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  922. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  923. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  924. // }
  925. // else
  926. // {
  927. // ass_stCalOut.blTorqPIFlg = FALSE;
  928. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  929. // }
  930. #else
  931. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  932. #endif
  933. break;
  934. case ReduceCurrent:
  935. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  936. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  937. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  938. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  939. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  940. {
  941. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  942. }
  943. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  944. {
  945. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  946. }
  947. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  948. break;
  949. case StopAssit:
  950. ass_stCalOut.swTorAssistCurrentTemp = 0;
  951. ass_stCalOut.swTorRefEnd = 0;
  952. break;
  953. default:
  954. break;
  955. }
  956. /* Assist Iqref Output */
  957. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  958. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  959. /* Bikespeed Limit Coef*/
  960. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  961. ass_stCalOut.swAssitCurRef = (SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swSmoothStopGain >> 12;
  962. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  963. }
  964. /**
  965. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  966. *
  967. * @param coef polynomial coefficient a, b, c, d
  968. * @param Value polynomial input value X
  969. * @param Qnum polynomial input Q type
  970. * @return UWORD polynomial output Y
  971. */
  972. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  973. {
  974. /* Limit the Output Current according to Bike Gear */
  975. UWORD uwIqLimitTemp1;
  976. if(gear > 5)
  977. {
  978. gear = 5;
  979. }
  980. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  981. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  982. }
  983. /**
  984. * @brief
  985. *
  986. * @param
  987. * @return
  988. */
  989. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  990. {
  991. /* Limit the Output Current according to Bike SOC */
  992. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  993. {
  994. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  995. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - ((ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  996. }
  997. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  998. {
  999. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  1000. }
  1001. else
  1002. {
  1003. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  1004. }
  1005. }
  1006. /**
  1007. * @brief Assist function
  1008. *
  1009. * @param coef polynomial coefficient a, b, c, d
  1010. * @param Value polynomial input value X
  1011. * @param Qnum polynomial input Q type
  1012. * @return UWORD polynomial output Y
  1013. */
  1014. void ass_voAssist(void)
  1015. {
  1016. /* Start Assist Jduge */
  1017. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  1018. {
  1019. ass_stCalCoef.blAssistflag = TRUE;
  1020. }
  1021. if (ass_stCalCoef.blAssistflag == TRUE)
  1022. {
  1023. /* Calculate Iqref Limit */
  1024. UWORD uwIqLimitTemp;
  1025. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  1026. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  1027. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  1028. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  1029. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  1030. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  1031. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  1032. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  1033. /* Calculate Assist Current, Iqref*/
  1034. AssitCuvApplPerVolt();
  1035. /* Iqref Limit */
  1036. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1037. {
  1038. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1039. }
  1040. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1041. {
  1042. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1043. }
  1044. else
  1045. {
  1046. //do nothing
  1047. }
  1048. }
  1049. else
  1050. {
  1051. ass_stCalOut.swAssitCurRef = 0;
  1052. }
  1053. }
  1054. /**
  1055. * @brief
  1056. *
  1057. * @param
  1058. * @return
  1059. */
  1060. void ass_voMoveAverageFilter(MAF_IN *in)
  1061. {
  1062. in->slSum -= in->swBuffer[in->uwIndex];
  1063. in->swBuffer[in->uwIndex] = in->swValue;
  1064. in->slSum += (SLONG)in->swValue;
  1065. // if (!in->blSecFlag)
  1066. // {
  1067. // in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1068. // }
  1069. // else
  1070. // {
  1071. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1072. // }
  1073. in->uwIndex++;
  1074. if (in->uwIndex >= in->uwLength)
  1075. {
  1076. in->blSecFlag = TRUE;
  1077. in->uwIndex = 0;
  1078. }
  1079. }
  1080. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1081. {
  1082. UWORD i;
  1083. in->uwIndex = 0;
  1084. in->slSum = 0;
  1085. in->blSecFlag = FALSE;
  1086. in->slAverValue = 0;
  1087. for (i = 0; i < in->uwLength; i++)
  1088. {
  1089. in->swBuffer[i] = 0;
  1090. }
  1091. }