AssistCurve.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. /******************************
  24. *
  25. * Parameter
  26. *
  27. ******************************/
  28. ASS_FSM_STATUS Ass_FSM;
  29. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  30. ASS_PER_COEF ass_stCalCoef;
  31. ASS_PER_OUT ass_stCalOut;
  32. ASS_PARA_CONFIGURE ass_stParaCong;
  33. ASS_PARA_SET ass_stParaSet;
  34. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  35. ASS_CURLIM_OUT ass_stCurLimOut;
  36. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  37. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  38. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  39. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  40. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  41. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  42. ASS_TORQ_PI_IN ass_stTorqPIIn;
  43. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  44. SWORD ass_swTorqMafBuf[64];
  45. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  46. SWORD ass_swUqLimMafBuf[64];
  47. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  48. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  49. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  50. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  51. static SWORD ass_pvt_swVoltCnt=0;
  52. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  53. static UWORD AssCnt1ms;
  54. /******************************
  55. *
  56. * Function
  57. *
  58. ******************************/
  59. /**
  60. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  61. *
  62. * @param coef polynomial coefficient a, b, c, d
  63. * @param Value polynomial input value X
  64. * @param Qnum polynomial input Q type
  65. * @return UWORD polynomial output Y
  66. */
  67. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  68. {
  69. SLONG out;
  70. SLONG temp_a, temp_b, temp_c;
  71. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  72. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  73. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  74. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  75. out = temp_a + temp_b + temp_c + coef->d;
  76. out = (SLONG)out;
  77. return out;
  78. }
  79. /**
  80. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  81. *
  82. * @param coef original point coefficient z, h, k
  83. * @return POLY_COEF a, b, c, d
  84. */
  85. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  86. //{
  87. // POLY_COEF out;
  88. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  89. // out.a = (SQWORD)0; // Q12
  90. // out.b = (SQWORD)coef->z; // Q12
  91. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  92. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  93. // return out;
  94. //}
  95. /**
  96. * @brief Torque to Current when Id = 0;
  97. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  98. * @param coef polynomial coefficient a, b, c, d
  99. * @param Value polynomial input value X
  100. * @param Qnum polynomial input Q type
  101. * @return UWORD polynomial output Y
  102. */
  103. static SWORD ass_swTorq2CurPu(SWORD Tor)
  104. {
  105. SWORD swCurrentPu;
  106. SWORD swMotorTorqueNotPu;
  107. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  108. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  109. return swCurrentPu;
  110. }
  111. /**
  112. * @brief
  113. *
  114. * @param
  115. * @return
  116. */
  117. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  118. {
  119. UWORD TempAssit;
  120. UWORD TempGear, gear;
  121. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  122. // {
  123. // TempAssit = ass_stParaCong.uwAssistSelect1;
  124. // }
  125. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  126. // {
  127. // TempAssit = ass_stParaCong.uwAssistSelect2;
  128. // }
  129. // else
  130. // {
  131. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  132. // }
  133. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  134. {
  135. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  136. }
  137. else if (ass_stParaCong.uwStartMode == 2)
  138. {
  139. TempAssit = ass_stParaCong.uwAssistSelect1;
  140. }
  141. else if (ass_stParaCong.uwStartMode == 3)
  142. {
  143. TempAssit = ass_stParaCong.uwAssistSelect2;
  144. }
  145. else
  146. {
  147. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  148. }
  149. SLONG slTorqGainSum =0;
  150. for(UWORD i = 0; i < 4; i++)
  151. {
  152. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  153. }
  154. if(slTorqGainSum == 0)
  155. {
  156. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  157. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  158. UWORD a ;
  159. a =sizeof( slTorqAssGain);
  160. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  161. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  162. }
  163. for (gear = 0; gear < 5; gear++)
  164. {
  165. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  166. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  167. }
  168. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  169. }
  170. /**
  171. * @brief Para from EE Init
  172. *
  173. * @param void
  174. * @return void
  175. */
  176. void ass_voAssitEEInit(void)
  177. {
  178. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  179. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  180. ass_stParaCong.uwMechRationMotor = 35; // Q0
  181. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  182. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  183. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  184. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  185. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  186. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  187. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_VOLTAGE;
  188. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  189. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  190. ass_stParaCong.uwAutoPowerOffTime = BIKE_AUTO_POWER_OFF_TIME;
  191. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  192. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  193. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  194. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  195. ass_stParaSet.uwStartUpGainStep = 25;
  196. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  197. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  198. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  199. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  200. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  201. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  202. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  203. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  204. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  205. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  206. ass_stParaSet.uwAsssistSelectNum = 1;
  207. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  208. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  209. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  210. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  211. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  212. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  213. /* 函数私有变量初始化 */
  214. ass_pvt_swVoltCnt = 0;
  215. ass_pvt_uwTorqAccCnt = 0;
  216. ass_pvt_uwTorqDecCnt = 0;
  217. ass_pvt_uwSpd2TorqCnt = 0;
  218. AssCnt1ms = 0;
  219. }
  220. /**
  221. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  222. *
  223. * @param coef polynomial coefficient a, b, c, d
  224. * @param Value polynomial input value X
  225. * @param Qnum polynomial input Q type
  226. * @return UWORD polynomial output Y
  227. */
  228. LPF_OUT ass_pvt_stCurLpf;
  229. void ass_voAssitCoef(void)
  230. {
  231. /*状态机初始化*/
  232. Ass_FSM = StopAssit;
  233. /*电机限制初始化*/
  234. ass_stParaCong.uwCofCurMaxPu = ((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE; // Q14
  235. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  236. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  237. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  238. /*速度环参数初始化*/
  239. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  240. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  241. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  242. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  243. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  244. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  245. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  246. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  247. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  248. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  249. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  250. /*电流限幅计算*/
  251. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  252. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  253. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  254. ass_stCurLimCalBMSCoef.swIqLImitK =
  255. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  256. /*助力曲线初始化*/
  257. ass_voAssistModeSelect();
  258. /*助力启动阈值初始化*/
  259. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  260. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  261. /*助力系数初始化*/
  262. ass_stCalCoef.StartFlag = 0;
  263. ass_stCalCoef.swSmoothGain = 0; // Q12
  264. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  265. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  266. if (ass_stCalCoef.uwStartUpGainAddStep < 1)
  267. {
  268. ass_stCalCoef.uwStartUpGainAddStep = 1;
  269. }
  270. if (ass_stCalCoef.uwStartUpGainAddStep > 50)
  271. {
  272. ass_stCalCoef.uwStartUpGainAddStep = 50;
  273. }
  274. /*设置启动到正常助力最少踏频数*/
  275. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  276. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  277. {
  278. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  279. }
  280. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  281. {
  282. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  283. }
  284. /*设置滑动平均滤波踏频数*/
  285. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  286. ass_stCalCoef.swCadanceGain = 0;
  287. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  288. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  289. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  290. /*初始化计数*/
  291. ass_stCalCoef.uwCadencePeriodCNT = 0;
  292. ass_stCalCoef.swCadanceCNT = 0;
  293. ass_stCalCoef.sw2StopCNT = 0;
  294. ass_stCalCoef.swAss2SpdCNT = 0;
  295. /*配置速度环参数*/
  296. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  297. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  298. ass_stCalCoef.swSpeedlimtrpm = -100;
  299. ass_stCalCoef.swBikeSpeedGain = 0;
  300. /*设置电流限幅*/
  301. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  302. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  303. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  304. /*初始化标志*/
  305. ass_stCalCoef.blAssistflag = FALSE;
  306. ass_stCalOut.swTorAssistSum1 = 0;
  307. ass_stCalOut.swTorAssistSum2 = 0;
  308. ass_stCalOut.swTorAss2CurrentTemp = 0;
  309. ass_stCalOut.swCadAss2CurrentTemp = 0;
  310. ass_stCalOut.swTorAssistCurrentTemp = 0;
  311. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  312. ass_stCalOut.swTorAssistCurrent = 0;
  313. ass_stCalOut.swSpeedRef = 0;
  314. ass_stCalOut.swCadSpd2MotSpd = 0;
  315. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  316. ass_stCurLimCoef.uwLimitGain[1] = 400;
  317. ass_stCurLimCoef.uwLimitGain[2] = 682;
  318. ass_stCurLimCoef.uwLimitGain[3] = 910;
  319. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  320. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  321. ass_stCurLimCoef.uwSpdThresHold = 21845;
  322. /*设置车速限幅*/
  323. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  324. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  325. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  326. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  327. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  328. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  329. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  330. /*设置转矩电流标定系数*/
  331. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  332. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  333. ass_Tor2CurCalCoef.swCalCoefINV =
  334. (((SLONG)1 << 7) * 1000 * 1000) /
  335. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  336. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  337. ass_pvt_stCurLpf.slY.sl = 0;
  338. }
  339. /**
  340. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  341. *
  342. * @param coef polynomial coefficient a, b, c, d
  343. * @param Value polynomial input value X
  344. * @param Qnum polynomial input Q type
  345. * @return UWORD polynomial output Y
  346. */
  347. //void ass_voAssitTorqPIInit(void)
  348. //{
  349. // ass_stTorqPIOut.slIRefPu = 0;
  350. // ass_stTorqPIOut.swErrZ1Pu = 0;
  351. // ass_stTorqPIOut.swIRefPu = 0;
  352. //}
  353. //
  354. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  355. //{
  356. // SLONG slErrPu, slDeltaErrPu;
  357. // SLONG slIpPu, slIiPu;
  358. // SLONG slImaxPu, slIminPu;
  359. // SQWORD sqIRefPu, sqIpPu;
  360. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  361. //
  362. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  363. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  364. //
  365. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  366. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  367. //
  368. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  369. //
  370. // if (slErrPu > 32767)
  371. // {
  372. // slErrPu = 32767;
  373. // }
  374. // else if (slErrPu < -32768)
  375. // {
  376. // slErrPu = -32768;
  377. // }
  378. // else
  379. // {
  380. // /* Nothing */
  381. // }
  382. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  383. // slDeltaErrPu = slErrPu;
  384. // if (slDeltaErrPu > 32767)
  385. // {
  386. // slDeltaErrPu = 32767;
  387. // }
  388. // else if (slDeltaErrPu < -32768)
  389. // {
  390. // slDeltaErrPu = -32768;
  391. // }
  392. // else
  393. // {
  394. // /* Nothing */
  395. // }
  396. //
  397. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  398. // sqIpPu = (SQWORD)slIpPu << 3;
  399. //
  400. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  401. //
  402. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  403. // sqIRefPu = sqIpPu;
  404. //
  405. // if (sqIRefPu > slImaxPu)
  406. // {
  407. // out->slIRefPu = slImaxPu;
  408. // }
  409. // else if (sqIRefPu < slIminPu)
  410. // {
  411. // out->slIRefPu = slIminPu;
  412. // }
  413. // else
  414. // {
  415. // out->slIRefPu = sqIRefPu;
  416. // }
  417. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  418. // out->swErrZ1Pu = (SWORD)slErrPu;
  419. //}
  420. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  421. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  422. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  423. SWORD swTmpSpdtoTorqCur;
  424. SLONG slTmpSmoothCur;
  425. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  426. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  427. {
  428. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  429. SWORD swCurSwitch = 0;
  430. SWORD swTmpVoltPu,swTmpVoltPu2;
  431. SLONG slSpdErr,slTmpVoltLim;
  432. SWORD swSpdKpPu = 500; //Q10
  433. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  434. UWORD uwTmpStopCnt = 0;
  435. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  436. /* Select Torq Growth Rate by Bike Gear */
  437. if (ass_stCalIn.uwGearSt == 1)
  438. {
  439. uwTorqAccStep = 50;
  440. }
  441. else if(ass_stCalIn.uwGearSt == 2)
  442. {
  443. uwTorqAccStep = 100;
  444. }
  445. else if(ass_stCalIn.uwGearSt == 3)
  446. {
  447. uwTorqAccStep = 120;
  448. }
  449. else if(ass_stCalIn.uwGearSt == 4)
  450. {
  451. uwTorqAccStep = 150;
  452. }
  453. else if(ass_stCalIn.uwGearSt == 5)
  454. {
  455. uwTorqAccStep = 150;
  456. }
  457. else
  458. {
  459. //do nothing
  460. }
  461. uwTorqDecStep = 80;
  462. AssCnt1ms ++;
  463. if(AssCnt1ms >= 10000)
  464. {
  465. AssCnt1ms = 0;
  466. }
  467. ass_stCalCoef.swTorqFilterGain = Q14_1;
  468. /* Select TorqRef: LPFTorq or MAFTorq */
  469. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  470. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  471. // if(Ass_FSM == Startup)
  472. // {
  473. // swTorqCmd1 = ass_stCalIn.uwtorquePer >> 1;
  474. // }
  475. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  476. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  477. {
  478. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  479. }
  480. /* Assist torque Cal using Assist Curve */
  481. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  482. if(ass_stCalIn.uwGearSt == 5)
  483. {
  484. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  485. }
  486. else
  487. {
  488. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  489. }
  490. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  491. {
  492. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  493. }
  494. else
  495. {
  496. //do nothing;
  497. }
  498. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  499. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  500. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  501. {
  502. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  503. }
  504. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  505. {
  506. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  507. }
  508. /* Select Assist Percent of Torq and Candence*/
  509. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  510. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  511. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  512. /* Candance Speed to Motor Speed*/
  513. ass_stCalOut.swCadSpd2MotSpd =
  514. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  515. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  516. /* Back EMF Cal */
  517. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  518. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  519. if (swTmpVoltPu < swTmpVoltPu2)
  520. {
  521. swTmpVoltPu = swTmpVoltPu2;
  522. }
  523. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  524. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  525. /* Assist FSM Control */
  526. switch (Ass_FSM)
  527. {
  528. case Startup:
  529. // ass_stCalCoef.swSmoothGain = Q12_1;
  530. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  531. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  532. {
  533. ass_stCalCoef.swSmoothGain = Q12_1;
  534. }
  535. swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  536. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  537. if(slSpdErr < 0)
  538. {
  539. slSpdErr = 0;
  540. }
  541. // ass_stCalCoef.StartFlag = 1;
  542. /* Open Voltage Limit according SpdErr*/
  543. if(ass_stCalCoef.StartFlag == 0)
  544. {
  545. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  546. if(slTmpVoltLim > scm_swVsDcpLimPu)
  547. {
  548. slTmpVoltLim = scm_swVsDcpLimPu;
  549. }
  550. else if(slTmpVoltLim <= swTmpVoltPu)
  551. {
  552. slTmpVoltLim = swTmpVoltPu;
  553. }
  554. else
  555. {
  556. //do nothing
  557. }
  558. ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  559. if(slSpdErr <= 1000)
  560. {
  561. ass_stCalCoef.StartFlag = 1;
  562. }
  563. // if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  564. // {
  565. // ass_pvt_swVoltCnt++;
  566. // }
  567. // else
  568. // {
  569. // ass_pvt_swVoltCnt=0;
  570. // }
  571. // if(ass_pvt_swVoltCnt > 10)
  572. // {
  573. // ass_pvt_swVoltCnt=0;
  574. // ass_stCalCoef.StartFlag = 1;
  575. // }
  576. }
  577. else if(ass_stCalCoef.StartFlag ==1 )
  578. {
  579. if(0 == (AssCnt1ms%5))
  580. {
  581. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  582. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  583. {
  584. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  585. }
  586. }
  587. if(slSpdErr <= 100)
  588. {
  589. ass_pvt_swVoltCnt++;
  590. }
  591. else
  592. {
  593. ass_pvt_swVoltCnt--;
  594. if(ass_pvt_swVoltCnt < 0)
  595. {
  596. ass_pvt_swVoltCnt = 0;
  597. }
  598. }
  599. /* Switch to TorqueAssit FSM */
  600. if(ass_pvt_swVoltCnt > 30)
  601. {
  602. Ass_FSM = TorqueAssit;
  603. ass_stCalCoef.StartFlag=0;
  604. ass_pvt_swVoltCnt=0;
  605. }
  606. }
  607. else
  608. {
  609. //do nothing
  610. }
  611. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  612. /* Switch to ReduceCurrent FSM */
  613. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  614. {
  615. /* When CandanceFreq=0 or BikeGear=0*/
  616. ass_stCalCoef.swAss2SpdCNT = 0;
  617. Ass_FSM = ReduceCurrent;
  618. }
  619. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  620. {
  621. ass_stCalCoef.swAss2SpdCNT++;
  622. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  623. if(uwTmpStopCnt < 200)
  624. {
  625. uwTmpStopCnt = 200;
  626. }
  627. else if(uwTmpStopCnt > 500)
  628. {
  629. uwTmpStopCnt = 500;
  630. }
  631. else
  632. {
  633. //do nothing
  634. }
  635. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  636. {
  637. Ass_FSM = ReduceCurrent;
  638. ass_stCalCoef.swAss2SpdCNT = 0;
  639. ass_stCalCoef.StartFlag=0;
  640. }
  641. }
  642. else
  643. {
  644. ass_stCalCoef.swAss2SpdCNT = 0;
  645. }
  646. break;
  647. case TorqueAssit:
  648. /* 启动系数 */
  649. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  650. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  651. {
  652. ass_stCalCoef.swSmoothGain = Q12_1;
  653. }
  654. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  655. if(0 == (AssCnt1ms%5))
  656. {
  657. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  658. // {
  659. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  660. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  661. {
  662. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  663. }
  664. // }
  665. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  666. // {
  667. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  668. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_ParaSet.uwStartUpCadNm))
  669. //// {
  670. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_ParaSet.uwStartUpCadNm;
  671. //// }
  672. // }
  673. // else
  674. // {
  675. // }
  676. }
  677. /* TorqueRef Select Coef */
  678. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  679. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  680. {
  681. ass_stCalCoef.swTorqFilterGain = Q14_1;
  682. }
  683. /* Switch to ReduceCurrent FSM */
  684. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  685. {
  686. /* When CandanceFreq=0 or BikeGear=0*/
  687. ass_stCalOut.blTorqPIFlg = FALSE;
  688. ass_stCalCoef.swAss2SpdCNT = 0;
  689. Ass_FSM = ReduceCurrent;
  690. }
  691. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  692. {
  693. ass_stCalCoef.swAss2SpdCNT++;
  694. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  695. if(uwTmpStopCnt < 200)
  696. {
  697. uwTmpStopCnt = 200;
  698. }
  699. else if(uwTmpStopCnt > 500)
  700. {
  701. uwTmpStopCnt = 500;
  702. }
  703. else
  704. {
  705. //do nothing
  706. }
  707. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  708. {
  709. ass_stCalCoef.swAss2SpdCNT = 0;
  710. ass_stCalOut.blTorqPIFlg = FALSE;
  711. Ass_FSM = ReduceCurrent;
  712. }
  713. }
  714. else
  715. {
  716. ass_stCalCoef.swAss2SpdCNT = 0;
  717. }
  718. break;
  719. case ReduceCurrent:
  720. /* Switch to StopAssit FSM */
  721. if(ass_stCalCoef.swSmoothGain <= 0)
  722. {
  723. ass_stCalCoef.swSmoothGain = 0;
  724. ass_stCalCoef.swTorqFilterGain = 0;
  725. ass_stCalCoef.swCadanceGain = 0;
  726. Ass_FSM = StopAssit;
  727. }
  728. else
  729. {
  730. /* Reduce Curret Coef to Zero*/
  731. ass_stCalCoef.swSmoothGain -=40;
  732. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  733. }
  734. /* Switch to Startup FSM */
  735. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  736. // {
  737. // Ass_FSM = Startup;
  738. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  739. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  740. // }
  741. break;
  742. case StopAssit:
  743. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  744. /* Switch to Startup FSM */
  745. if ((BikeBrake_blGetstate() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  746. {
  747. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  748. {
  749. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  750. {
  751. ass_stCalCoef.sw2StopCNT = 0;
  752. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  753. ass_pvt_stCurLpf.slY.sw.hi = 0;
  754. Ass_FSM = Startup;
  755. }
  756. }
  757. else
  758. {
  759. if (ass_stCalIn.uwtorquelpf > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  760. {
  761. ass_stCalCoef.sw2StopCNT = 0;
  762. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  763. ass_pvt_stCurLpf.slY.sw.hi = 0;
  764. Ass_FSM = Startup;
  765. }
  766. }
  767. }
  768. /* Assit Exit */
  769. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  770. {
  771. ass_stCalCoef.sw2StopCNT++;
  772. }
  773. else
  774. {
  775. if (ass_stCalCoef.sw2StopCNT >= 1)
  776. {
  777. ass_stCalCoef.sw2StopCNT--;
  778. }
  779. }
  780. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE))// 3s
  781. {
  782. ass_stCalCoef.sw2StopCNT = 0;
  783. ass_stCalCoef.blAssistflag = FALSE;
  784. }
  785. break;
  786. default:
  787. break;
  788. }
  789. /* Bikespeed Limit */
  790. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  791. {
  792. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  793. }
  794. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  795. {
  796. ass_stCalCoef.swBikeSpeedGain =
  797. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  798. uwTorqAccStep = 10;
  799. uwTorqDecStep = 10;
  800. }
  801. else
  802. {
  803. ass_stCalCoef.swBikeSpeedGain = 0;
  804. uwTorqAccStep = 10;
  805. uwTorqDecStep = 10;
  806. }
  807. /* Assist Current Output in each FSM */
  808. switch (Ass_FSM)
  809. {
  810. case Startup:
  811. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  812. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  813. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  814. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  815. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  816. {
  817. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  818. }
  819. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  820. {
  821. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  822. }
  823. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  824. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  825. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  826. break;
  827. case TorqueAssit:
  828. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  829. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  830. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  831. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  832. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  833. {
  834. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  835. }
  836. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  837. {
  838. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  839. }
  840. #if CURSWITCH
  841. /* Ajust CurrentRef growth and decline rate */
  842. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  843. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  844. {
  845. ass_pvt_uwTorqAccCnt++;
  846. if(ass_pvt_uwTorqAccCnt >= 2)
  847. {
  848. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  849. ass_pvt_uwTorqAccCnt = 0;
  850. }
  851. }
  852. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  853. {
  854. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  855. {
  856. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  857. }
  858. // ass_pvt_uwTorqDecCnt++;
  859. // if(ass_pvt_uwTorqDecCnt >= 10)
  860. // {
  861. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  862. // ass_pvt_uwTorqDecCnt = 0;
  863. // }
  864. }
  865. else
  866. {
  867. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  868. }
  869. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  870. /* Torq Clzloop Test */
  871. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  872. // {
  873. // if(!ass_stCalOut.blTorqPIFlg)
  874. // {
  875. // /* Initial value */
  876. // ass_stTorqPIOut.slIRefPu = 0;
  877. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  878. // ass_stCalOut.blTorqPIFlg = TRUE;
  879. // }
  880. //
  881. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  882. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  883. // ass_stTorqPIIn.swImaxPu = 0;
  884. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  885. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  886. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  887. // }
  888. // else
  889. // {
  890. // ass_stCalOut.blTorqPIFlg = FALSE;
  891. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  892. // }
  893. #else
  894. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  895. #endif
  896. break;
  897. case ReduceCurrent:
  898. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  899. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  900. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  901. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  902. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  903. {
  904. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  905. }
  906. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  907. {
  908. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  909. }
  910. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  911. break;
  912. case StopAssit:
  913. ass_stCalOut.swTorAssistCurrentTemp = 0;
  914. ass_stCalOut.swTorRefEnd = 0;
  915. break;
  916. default:
  917. break;
  918. }
  919. /* Assist Iqref Output */
  920. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  921. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  922. /* Bikespeed Limit Coef*/
  923. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  924. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  925. }
  926. /**
  927. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  928. *
  929. * @param coef polynomial coefficient a, b, c, d
  930. * @param Value polynomial input value X
  931. * @param Qnum polynomial input Q type
  932. * @return UWORD polynomial output Y
  933. */
  934. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  935. {
  936. /* Limit the Output Current according to Bike Gear */
  937. UWORD uwIqLimitTemp1;
  938. if(gear > 5)
  939. {
  940. gear = 5;
  941. }
  942. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  943. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  944. }
  945. /**
  946. * @brief
  947. *
  948. * @param
  949. * @return
  950. */
  951. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  952. {
  953. /* Limit the Output Current according to Bike SOC */
  954. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  955. {
  956. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  957. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - ((ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  958. }
  959. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  960. {
  961. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  962. }
  963. else
  964. {
  965. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  966. }
  967. }
  968. /**
  969. * @brief Assist function
  970. *
  971. * @param coef polynomial coefficient a, b, c, d
  972. * @param Value polynomial input value X
  973. * @param Qnum polynomial input Q type
  974. * @return UWORD polynomial output Y
  975. */
  976. void ass_voAssist(void)
  977. {
  978. /* Start Assist Jduge */
  979. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  980. {
  981. ass_stCalCoef.blAssistflag = TRUE;
  982. }
  983. if (ass_stCalCoef.blAssistflag == TRUE)
  984. {
  985. /* Calculate Iqref Limit */
  986. UWORD uwIqLimitTemp;
  987. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  988. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  989. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  990. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  991. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  992. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  993. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  994. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  995. /* Calculate Assist Current, Iqref*/
  996. AssitCuvApplPerVolt();
  997. /* Iqref Limit */
  998. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  999. {
  1000. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1001. }
  1002. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1003. {
  1004. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1005. }
  1006. else
  1007. {
  1008. //do nothing
  1009. }
  1010. }
  1011. else
  1012. {
  1013. ass_stCalOut.swAssitCurRef = 0;
  1014. }
  1015. }
  1016. /**
  1017. * @brief
  1018. *
  1019. * @param
  1020. * @return
  1021. */
  1022. void ass_voMoveAverageFilter(MAF_IN *in)
  1023. {
  1024. in->slSum -= in->swBuffer[in->uwIndex];
  1025. in->swBuffer[in->uwIndex] = in->swValue;
  1026. in->slSum += (SLONG)in->swValue;
  1027. if (!in->blSecFlag)
  1028. {
  1029. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1030. }
  1031. else
  1032. {
  1033. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1034. }
  1035. in->uwIndex++;
  1036. if (in->uwIndex >= in->uwLength)
  1037. {
  1038. in->blSecFlag = TRUE;
  1039. in->uwIndex = 0;
  1040. }
  1041. }
  1042. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1043. {
  1044. UWORD i;
  1045. in->uwIndex = 0;
  1046. in->slSum = 0;
  1047. in->blSecFlag = FALSE;
  1048. for (i = 0; i < 64; i++)
  1049. {
  1050. in->swBuffer[i] = 0;
  1051. }
  1052. }