AssistCurve.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. #include "bikegearsensor.h"
  24. #include "giant_can.h"
  25. /******************************
  26. *
  27. * Parameter
  28. *
  29. ******************************/
  30. ASS_FSM_STATUS Ass_FSM;
  31. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  32. ASS_PER_COEF ass_stCalCoef;
  33. ASS_PER_OUT ass_stCalOut;
  34. ASS_PARA_CONFIGURE ass_stParaCong;
  35. ASS_PARA_SET ass_stParaSet;
  36. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  37. ASS_CURLIM_OUT ass_stCurLimOut;
  38. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  39. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  40. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  41. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  42. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  43. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  44. ASS_TORQ_PI_IN ass_stTorqPIIn;
  45. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  46. SWORD ass_swTorqMafBuf[64];
  47. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  48. SWORD ass_swUqLimMafBuf[64];
  49. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  50. UWORD ass_uwPwrCurLim[6] = CUR_LIM_DEFAULT;
  51. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  52. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  53. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  54. static SWORD ass_pvt_swVoltCnt=0;
  55. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  56. static UWORD AssCnt1ms;
  57. static UWORD ass_pvt_uwSmoothFlg = 0;
  58. /******************************
  59. *
  60. * Function
  61. *
  62. ******************************/
  63. /**
  64. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  65. *
  66. * @param coef polynomial coefficient a, b, c, d
  67. * @param Value polynomial input value X
  68. * @param Qnum polynomial input Q type
  69. * @return UWORD polynomial output Y
  70. */
  71. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  72. {
  73. SLONG out;
  74. SLONG temp_a, temp_b, temp_c;
  75. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  76. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  77. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  78. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  79. out = temp_a + temp_b + temp_c + coef->d;
  80. out = (SLONG)out;
  81. return out;
  82. }
  83. void ass_voAssistCurveRatio(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  84. {
  85. /* 根据OBC调整补偿系数*/
  86. if (ass_stParaCong.uwStartMode == 1) //
  87. {
  88. ass_stCalCoef.uwAssCurvGain = _IQ12(0.9);
  89. }
  90. else if (ass_stParaCong.uwStartMode == 2)
  91. {
  92. ass_stCalCoef.uwAssCurvGain = _IQ12(1.0);
  93. }
  94. else if (ass_stParaCong.uwStartMode == 3)
  95. {
  96. ass_stCalCoef.uwAssCurvGain = _IQ12(1.1);
  97. }
  98. else
  99. {
  100. ass_stCalCoef.uwAssCurvGain = _IQ12(1.0);
  101. }
  102. ass_stCalCoef.uwAssistCurveGain = ass_stCalCoef.uwAssCurvGain;
  103. /*线性段补偿系数*/
  104. ass_stCalCoef.swAssCompCoef.swKHigh = ass_stCalCoef.uwAssistCurveGain;
  105. /*曲线段补偿系数*/
  106. ass_stCalCoef.swAssCompCoef.swKLow = ass_stCalCoef.uwAssistCurveGain;
  107. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  108. }
  109. void ass_voAssistCurveCoef(ASS_CURVE_COMP_COEF *comp)
  110. {
  111. /*传感器输入力矩参考点*/
  112. SWORD swX1 = ASS_CURVE_X1 * TORQUE2PU >> 6; //Q14
  113. SWORD swX2 = ASS_CURVE_X2 * TORQUE2PU >> 6; //Q14
  114. SWORD swX3 = ASS_CURVE_X3 * TORQUE2PU >> 6; //Q14
  115. SWORD swY1,swY2,swY3,swZ;
  116. SLONG sltmpk2;
  117. UBYTE num = 5;
  118. #if(WEITUER_ENABLE == 1)
  119. num = 7;
  120. SLONG slTorqAssGain[7][4] = {10,50,200,100,\
  121. 20,70,270,100,\
  122. 30,90,390,100,\
  123. 40,110,550,100,\
  124. 50,130,700,100,\
  125. 60,150,1250,100,\
  126. 40,100,1050,100};
  127. memcpy(&ass_stCalCoef.slAssCurPre[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  128. #else
  129. /*电机输出力矩参考点*/
  130. memcpy(&ass_stCalCoef.slAssCurPre[0], &flash_stPara.slTorqAssGain[0], sizeof(ass_stCalCoef.slAssCurPre));
  131. #endif
  132. for(UWORD i = 0; i < num; i++)
  133. {
  134. swY1 = (ass_stCalCoef.slAssCurPre[i].slY1 * TORQUE2PU >> 6) * comp->swKLow >> 12 ; //Q20 - Q6 + Q12 - Q12 = Q14
  135. swY2 = (ass_stCalCoef.slAssCurPre[i].slY2 * TORQUE2PU >> 6) * comp->swKLow >> 12; //Q20 - Q6 + Q12 - Q12 = Q14
  136. swY3 = (ass_stCalCoef.slAssCurPre[i].slY3 * TORQUE2PU >> 6) * comp->swKHigh >> 12; //Q20 - Q6 + Q12 - Q12 = Q14
  137. swZ = ass_stCalCoef.slAssCurPre[i].slZ * TORQUE2PU >> 6; //Q20 -Q16 = Q14
  138. /* k1 =(y2-y1)/(x2-x1) */
  139. ass_stCalCoef.swAssCurCoef[i].swk1 = (((SLONG)swY2-(SLONG)swY1)<<10)/(swX2-swX1); // Q10
  140. /* b = y2-k2*x1 */
  141. ass_stCalCoef.swAssCurCoef[i].swb = ((SLONG)swY2 - ((SLONG)ass_stCalCoef.swAssCurCoef[i].swk1 * swX2 >> 10));// Q14
  142. /* k2 = (y3-k1*x3-b)/(x3-Z)^2 */
  143. sltmpk2 = (SLONG)swY3 - ((SLONG)ass_stCalCoef.swAssCurCoef[i].swk1 * swX3 >> 10)- (SLONG)ass_stCalCoef.swAssCurCoef[i].swb; //Q14
  144. ass_stCalCoef.swAssCurCoef[i].swk2 = ((SQWORD)sltmpk2 << 20 )/((SLONG)(swX3-swZ)*(swX3-swZ)); //Q20
  145. ass_stCalCoef.swAssCurCoef[i].swZ = swZ;
  146. }
  147. }
  148. SLONG ass_voAssistCurveCal(ASS_CURVE_COEF *coef, SWORD *value)
  149. {
  150. SLONG out;
  151. if(*value < coef->swZ)
  152. {
  153. /* Y = k1*x+b x< Z */
  154. out = ((SLONG)*value * coef->swk1 >> 10) + coef->swb;
  155. }
  156. else
  157. {
  158. /* Y = k1*x+k2*(x-Z)^2+b x>= Z */
  159. out = ((SLONG)*value * coef->swk1 >> 10) + coef->swb + ((SQWORD)coef->swk2 * (*value - coef->swZ) * (*value - coef->swZ) >> 20);
  160. }
  161. return out;
  162. }
  163. /**
  164. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  165. *
  166. * @param coef original point coefficient z, h, k
  167. * @return POLY_COEF a, b, c, d
  168. */
  169. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  170. //{
  171. // POLY_COEF out;
  172. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  173. // out.a = (SQWORD)0; // Q12
  174. // out.b = (SQWORD)coef->z; // Q12
  175. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  176. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  177. // return out;
  178. //}
  179. /**
  180. * @brief Torque to Current when Id = 0;
  181. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  182. * @param coef polynomial coefficient a, b, c, d
  183. * @param Value polynomial input value X
  184. * @param Qnum polynomial input Q type
  185. * @return UWORD polynomial output Y
  186. */
  187. static SWORD ass_swTorq2CurPu(SWORD Tor)
  188. {
  189. SWORD swCurrentPu;
  190. SWORD swMotorTorqueNotPu;
  191. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  192. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  193. return swCurrentPu;
  194. }
  195. /**
  196. * @brief
  197. *
  198. * @param
  199. * @return
  200. */
  201. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  202. {
  203. UWORD TempAssit;
  204. UWORD TempGear, gear;
  205. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  206. // {
  207. // TempAssit = ass_stParaCong.uwAssistSelect1;
  208. // }
  209. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  210. // {
  211. // TempAssit = ass_stParaCong.uwAssistSelect2;
  212. // }
  213. // else
  214. // {
  215. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  216. // }
  217. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  218. {
  219. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  220. }
  221. else if (ass_stParaCong.uwStartMode == 2)
  222. {
  223. TempAssit = ass_stParaCong.uwAssistSelect1;
  224. }
  225. else if (ass_stParaCong.uwStartMode == 3)
  226. {
  227. TempAssit = ass_stParaCong.uwAssistSelect2;
  228. }
  229. else
  230. {
  231. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  232. }
  233. SLONG slTorqGainSum =0;
  234. for(UWORD i = 0; i < 4; i++)
  235. {
  236. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  237. }
  238. if(slTorqGainSum == 0)
  239. {
  240. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  241. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  242. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  243. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  244. }
  245. for (gear = 0; gear < 5; gear++)
  246. {
  247. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  248. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  249. }
  250. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  251. }
  252. /**
  253. * @brief Para from EE Init
  254. *
  255. * @param void
  256. * @return void
  257. */
  258. void ass_voAssitEEInit(void)
  259. {
  260. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  261. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  262. ass_stParaCong.uwMechRationMotor = 35; // Q0
  263. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  264. ass_stParaCong.uwCartSpdKmH = BIKE_SPEED_WALK_MAX;
  265. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  266. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  267. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  268. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  269. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_PARA;
  270. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  271. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  272. ass_stParaCong.uwAutoPowerOffTime = BIKE_POWER_PARA;
  273. ass_stParaCong.uwThrottleSmooth = BIKE_THROTTLE_SMOOTH;
  274. ass_stParaCong.uwNoneOBCEnable = BIKE_NONEOBCEBNABLE;
  275. ass_stParaCong.uwRearLightCycle = BIKE_REARLIGHTCYCLE;
  276. ass_stParaCong.uwRearLightDuty = BIKE_REARLIGHTDUTY;
  277. ass_stParaCong.swDeltaBikeSpeedLimit = BIKE_DELTASPEEDLIMITION;
  278. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  279. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  280. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  281. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  282. ass_stParaSet.uwStartUpGainStep = 25;
  283. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  284. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  285. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  286. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  287. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  288. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  289. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  290. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  291. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  292. ass_stParaSet.uwCadenceAssAjstGain = 4096; // Q12 percentage
  293. ass_stParaSet.uwAsssistSelectNum = 1;
  294. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  295. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  296. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  297. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  298. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  299. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  300. for(int i=0;i<5;i++)
  301. {
  302. ass_stCalCoef.ucAssistRatioGain[i] = 100;
  303. ass_stCalCoef.ucAssistAccelerationGain[i] = 100;
  304. ass_stCalCoef.ucMaxCurrentGain[i] = 100;
  305. ass_stCalCoef.ucMaxTorqueGain[i] = 100;
  306. }
  307. /* 函数私有变量初始化 */
  308. ass_pvt_swVoltCnt = 0;
  309. ass_pvt_uwTorqAccCnt = 0;
  310. ass_pvt_uwTorqDecCnt = 0;
  311. ass_pvt_uwSpd2TorqCnt = 0;
  312. ass_pvt_uwSmoothFlg = 0;
  313. AssCnt1ms = 0;
  314. }
  315. /**
  316. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  317. *
  318. * @param coef polynomial coefficient a, b, c, d
  319. * @param Value polynomial input value X
  320. * @param Qnum polynomial input Q type
  321. * @return UWORD polynomial output Y
  322. */
  323. LPF_OUT ass_pvt_stCurLpf;
  324. void ass_voAssitCoef(void)
  325. {
  326. /*状态机初始化*/
  327. Ass_FSM = StopAssit;
  328. /*电机限制初始化*/
  329. ass_stParaCong.uwCofCurMaxPu = ((ULONG)cp_stMotorPara.swIpeakMaxA << 14) / IBASE; // Q14
  330. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  331. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  332. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  333. /*速度环参数初始化*/
  334. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  335. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  336. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  337. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  338. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  339. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  340. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  341. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  342. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  343. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  344. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  345. /*电流限幅计算*/
  346. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  347. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 20;
  348. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  349. ass_stCurLimCalBMSCoef.swIqLImitK =
  350. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  351. /*助力曲线初始化*/
  352. ass_voAssistModeSelect();
  353. /*根据仪表选型配置整体曲线补偿系数*/
  354. ass_voAssistCurveRatio();
  355. /*助力曲线系数计算*/
  356. ass_voAssistCurveCoef(&ass_stCalCoef.swAssCompCoef);
  357. /*助力启动阈值初始化*/
  358. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  359. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  360. /*助力系数初始化*/
  361. ass_stCalCoef.StartFlag = 0;
  362. ass_stCalCoef.swSmoothGain = 0; // Q12
  363. ass_stCalCoef.swSmoothStopGain = 4096; //Q12
  364. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  365. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  366. /*设置启动到正常助力最少踏频数*/
  367. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  368. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  369. {
  370. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  371. }
  372. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  373. {
  374. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  375. }
  376. /*设置滑动平均滤波踏频数*/
  377. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  378. ass_stCalCoef.swCadanceGain = 0;
  379. ass_stCalCoef.uwSwitch1TorqThreshold = ass_stCalCoef.uwAssStopThreshold;//((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  380. ass_stCalCoef.uwSwitch2TorqThreshold = ass_stCalCoef.uwAssThreshold;//((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  381. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  382. /*初始化计数*/
  383. ass_stCalCoef.uwCadencePeriodCNT = 0;
  384. ass_stCalCoef.swCadanceCNT = 0;
  385. ass_stCalCoef.sw2StopCNT = 0;
  386. ass_stCalCoef.swAss2SpdCNT = 0;
  387. /*配置速度环参数*/
  388. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  389. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  390. ass_stCalCoef.swSpeedlimtrpm = -100;
  391. ass_stCalCoef.swBikeSpeedGain = 0;
  392. ass_stCalCoef.swMotorSpeedGain = Q12_1;
  393. /*设置电流限幅*/
  394. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  395. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  396. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  397. /*初始化标志*/
  398. ass_stCalCoef.blAssistflag = FALSE;
  399. ass_stCalOut.swTorAssistSum1 = 0;
  400. ass_stCalOut.swTorAssistSum2 = 0;
  401. ass_stCalOut.swTorAss2CurrentTemp = 0;
  402. ass_stCalOut.swCadAss2CurrentTemp = 0;
  403. ass_stCalOut.swTorAssistCurrentTemp = 0;
  404. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  405. ass_stCalOut.swTorAssistCurrent = 0;
  406. ass_stCalOut.swSpeedRef = 0;
  407. ass_stCalOut.swCadSpd2MotSpd = 0;
  408. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  409. ass_stCurLimCoef.uwLimitGain[1] = 400;
  410. ass_stCurLimCoef.uwLimitGain[2] = 682;
  411. ass_stCurLimCoef.uwLimitGain[3] = 910;
  412. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  413. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  414. ass_stCurLimCoef.uwSpdThresHold = 21845;
  415. /*设置车速限幅*/
  416. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * (ass_stParaSet.uwAssistLimitBikeSpdStart + ass_stParaCong.swDeltaBikeSpeedLimit)/
  417. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  418. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * (ass_stParaSet.uwAssistLimitBikeSpdStop + ass_stParaCong.swDeltaBikeSpeedLimit)/
  419. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  420. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  421. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  422. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  423. #if ((MOTOR_ID_SEL == MOTOR_WELLING_MTB_36V) || (MOTOR_ID_SEL == MOTOR_WELLING_MTB_48V))
  424. ass_stCurLimCoef.uwMotorSpdThresHold1 = SPD_RPM2PU(4290);//125Candance
  425. #elif ((MOTOR_ID_SEL == MOTOR_WELLING_CITY_36V) || (MOTOR_ID_SEL == MOTOR_WELLING_CITY_48V))
  426. ass_stCurLimCoef.uwMotorSpdThresHold1 = SPD_RPM2PU(3953);//115Candance
  427. #endif
  428. ass_stCurLimCoef.uwMotorSpdThresHold2 = ass_stCurLimCoef.uwMotorSpdThresHold1 + SPD_RPM2PU(200);
  429. ass_stCurLimCoef.ulMotorSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwMotorSpdThresHold2 - ass_stCurLimCoef.uwMotorSpdThresHold1)); // Q20;
  430. /*设置转矩电流标定系数*/
  431. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  432. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  433. ass_Tor2CurCalCoef.swCalCoefINV =
  434. (((SLONG)1 << 7) * 1000 * 1000) /
  435. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  436. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  437. ass_pvt_stCurLpf.slY.sl = 0;
  438. }
  439. /**
  440. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  441. *
  442. * @param coef polynomial coefficient a, b, c, d
  443. * @param Value polynomial input value X
  444. * @param Qnum polynomial input Q type
  445. * @return UWORD polynomial output Y
  446. */
  447. //void ass_voAssitTorqPIInit(void)
  448. //{
  449. // ass_stTorqPIOut.slIRefPu = 0;
  450. // ass_stTorqPIOut.swErrZ1Pu = 0;
  451. // ass_stTorqPIOut.swIRefPu = 0;
  452. //}
  453. //
  454. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  455. //{
  456. // SLONG slErrPu, slDeltaErrPu;
  457. // SLONG slIpPu, slIiPu;
  458. // SLONG slImaxPu, slIminPu;
  459. // SQWORD sqIRefPu, sqIpPu;
  460. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  461. //
  462. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  463. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  464. //
  465. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  466. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  467. //
  468. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  469. //
  470. // if (slErrPu > 32767)
  471. // {
  472. // slErrPu = 32767;
  473. // }
  474. // else if (slErrPu < -32768)
  475. // {
  476. // slErrPu = -32768;
  477. // }
  478. // else
  479. // {
  480. // /* Nothing */
  481. // }
  482. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  483. // slDeltaErrPu = slErrPu;
  484. // if (slDeltaErrPu > 32767)
  485. // {
  486. // slDeltaErrPu = 32767;
  487. // }
  488. // else if (slDeltaErrPu < -32768)
  489. // {
  490. // slDeltaErrPu = -32768;
  491. // }
  492. // else
  493. // {
  494. // /* Nothing */
  495. // }
  496. //
  497. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  498. // sqIpPu = (SQWORD)slIpPu << 3;
  499. //
  500. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  501. //
  502. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  503. // sqIRefPu = sqIpPu;
  504. //
  505. // if (sqIRefPu > slImaxPu)
  506. // {
  507. // out->slIRefPu = slImaxPu;
  508. // }
  509. // else if (sqIRefPu < slIminPu)
  510. // {
  511. // out->slIRefPu = slIminPu;
  512. // }
  513. // else
  514. // {
  515. // out->slIRefPu = sqIRefPu;
  516. // }
  517. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  518. // out->swErrZ1Pu = (SWORD)slErrPu;
  519. //}
  520. SWORD swPreCurrentPu;
  521. SWORD startonce = 0;
  522. UWORD kcoef =4096; //Q10
  523. UWORD uwTempStopCnt,StopCad,swMotorCadspd;
  524. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  525. {
  526. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  527. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  528. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  529. SWORD swTmpSpdtoTorqCur;
  530. SLONG slTmpSmoothCur;
  531. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  532. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  533. SWORD swCurSwitch = 0;
  534. SWORD swTmpVoltPu,swTmpVoltPu2;
  535. SLONG slSpdErr,slTmpVoltLim, slPreSpderror;
  536. SWORD swSpdKpPu = 500; //Q10
  537. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  538. SWORD swSpderror;
  539. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  540. /* Select Torq Growth Rate by Bike Gear */
  541. if (ass_stCalIn.uwGearSt == 1)
  542. {
  543. uwTorqAccStep = 50;
  544. }
  545. else if(ass_stCalIn.uwGearSt == 2)
  546. {
  547. uwTorqAccStep = 100;
  548. }
  549. else if(ass_stCalIn.uwGearSt == 3)
  550. {
  551. uwTorqAccStep = 120;
  552. }
  553. else if(ass_stCalIn.uwGearSt == 4)
  554. {
  555. uwTorqAccStep = 150;
  556. }
  557. else if(ass_stCalIn.uwGearSt == 5)
  558. {
  559. uwTorqAccStep = 150;
  560. }
  561. else
  562. {
  563. //do nothing
  564. }
  565. uwTorqDecStep = 80;
  566. if(ass_stCalIn.uwGearSt == 0)
  567. {
  568. ass_stCalCoef.uwSpeedAssistIMaxA = ass_stParaSet.uwSpeedAssistIMaxA;
  569. }
  570. else
  571. {
  572. ass_stCalCoef.uwSpeedAssistIMaxA = (UWORD)((ULONG)ass_stParaSet.uwSpeedAssistIMaxA * ass_stCalCoef.ucAssistAccelerationGain[ass_stCalIn.uwGearSt-1] / 100);//助力加速度增益
  573. }
  574. AssCnt1ms ++;
  575. if(AssCnt1ms >= 10000)
  576. {
  577. AssCnt1ms = 0;
  578. }
  579. /* Select TorqRef: LPFTorq or MAFTorq */
  580. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  581. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  582. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  583. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  584. {
  585. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  586. }
  587. if(swTorqCmd < ass_stCalCoef.uwSwitch1TorqThreshold )
  588. {
  589. ass_stCalCoef.swCadanceGain = 0; //Q12
  590. }
  591. else if(swTorqCmd >= ass_stCalCoef.uwSwitch1TorqThreshold && swTorqCmd < ass_stCalCoef.uwSwitch2TorqThreshold)
  592. {
  593. ass_stCalCoef.swCadanceGain = (((ULONG)swTorqCmd - (ULONG)ass_stCalCoef.uwSwitch1TorqThreshold) * ass_stCalCoef.ulStartupDeltInv )>>16;
  594. }
  595. else
  596. {
  597. ass_stCalCoef.swCadanceGain = 4096; //Q12
  598. }
  599. /* Assist torque Cal using Assist Curve */
  600. #if(GIANT_ENABLE == 1)
  601. slTeTorAssitTmpPu = (SLONG)giant_slPolynomial(&swTorqCmd);
  602. #elif(WEITUER_ENABLE == 1)
  603. UWORD uwBikeGear_tmp;
  604. if (MC_ControlCode.GearSt <= 0x05)
  605. {
  606. uwBikeGear_tmp = (UWORD)MC_ControlCode.GearSt;
  607. }
  608. else if (MC_ControlCode.GearSt == 0x33)
  609. {
  610. uwBikeGear_tmp = 6;
  611. }
  612. else if (MC_ControlCode.GearSt == 0x44)
  613. {
  614. uwBikeGear_tmp = 7;
  615. }
  616. else
  617. {
  618. uwBikeGear_tmp = 0;
  619. }
  620. if(uwBikeGear_tmp == 0)
  621. {
  622. slTeTorAssitTmpPu = 0;
  623. }
  624. else
  625. {
  626. slTeTorAssitTmpPu = ass_voAssistCurveCal(&ass_stCalCoef.swAssCurCoef[uwBikeGear_tmp-1], &swTorqCmd);
  627. }
  628. #else
  629. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  630. if(ass_stCalIn.uwGearSt == 5)
  631. {
  632. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  633. }
  634. else
  635. {
  636. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  637. }
  638. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  639. {
  640. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  641. }
  642. else
  643. {
  644. //do nothing;
  645. }
  646. if(ass_stCalIn.uwGearSt == 0)
  647. {
  648. slTeTorAssitTmpPu = 0;
  649. }
  650. else
  651. {
  652. slTeTorAssitTmpPu = (slTeTorAssitTmpPu * ass_stCalCoef.ucAssistRatioGain[ass_stCalIn.uwGearSt-1] / 100);//助力比增益
  653. }
  654. #endif
  655. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  656. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  657. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  658. {
  659. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  660. }
  661. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  662. {
  663. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  664. }
  665. /* Select Assist Percent of Torq and Candence*/
  666. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  667. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  668. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  669. /* Candance Speed to Motor Speed*/
  670. ass_stCalOut.swCadSpd2MotSpd =
  671. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  672. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  673. /* Back EMF Cal */
  674. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  675. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  676. if (swTmpVoltPu < swTmpVoltPu2)
  677. {
  678. swTmpVoltPu = swTmpVoltPu2;
  679. }
  680. swMotorCadspd =(SWORD)((SLONG)(ass_stCalIn.uwSpdFbkAbsPu << 15)/(ass_stParaCong.uwMechRationMotor * ass_stParaCong.uwMotorPoles)>>10);
  681. swSpderror = swMotorCadspd - 300;//(SWORD)ass_CalIn.uwcadance;
  682. if(swSpderror < 200)
  683. {
  684. StopCad = 200;
  685. }
  686. else
  687. {
  688. StopCad = swSpderror;
  689. }
  690. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  691. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  692. swPreCurrentPu = (SWORD)(((SLONG)swPreCurrentPu * 990 )>>10);
  693. /* Assist FSM Control */
  694. switch (Ass_FSM)
  695. {
  696. case Prepare:
  697. {
  698. UWORD tmpKp = 4000;//ass_ParaSet.uwStartUpCadNm ; //Q10
  699. slPreSpderror = (((SLONG)ass_stCalOut.swCadSpd2MotSpd * 800 )>>10) - ass_stCalIn.uwSpdFbkAbsPu; //Q15
  700. swPreCurrentPu = (slPreSpderror * tmpKp )>> 11; //Q14
  701. if(swPreCurrentPu < 0)
  702. {
  703. swPreCurrentPu = 0;
  704. }
  705. if((ass_stCalCoef.swAss2SpdCNT > 3000) || (ass_stCalIn.uwcadance == 0) || ((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold))) //踏频小于0.1 hz
  706. {
  707. Ass_FSM = StopAssit;
  708. ass_stCalCoef.swAss2SpdCNT = 0;
  709. }
  710. else
  711. {
  712. ass_stCalCoef.swAss2SpdCNT++;
  713. }
  714. if((ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 5) >> 3)) && (ass_stCalIn.uwcadance > 300)
  715. && ((BikeBrake_blGetstate() | bikegearsensor_blBikeGetState()) == FALSE))
  716. {
  717. Ass_FSM = Startup;
  718. ass_stCalCoef.swAss2SpdCNT=0;
  719. startonce = 0;
  720. }
  721. break;
  722. }
  723. case Startup:
  724. /* 启动系数 */
  725. if(ass_pvt_uwSmoothFlg == 0)
  726. {
  727. ass_stCalCoef.swSmoothGain += ass_stCalCoef.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  728. if(ass_stCalCoef.swSmoothGain >= ass_stCalCoef.uwStartupGain)
  729. {
  730. ass_pvt_uwSmoothFlg = 1;
  731. }
  732. }
  733. else if (ass_pvt_uwSmoothFlg == 1)
  734. {
  735. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  736. {
  737. ass_stCalCoef.swSmoothGain -= (ass_stCalCoef.uwSpeedAssistIMaxA >> 1);
  738. }
  739. else
  740. {
  741. ass_stCalCoef.swSmoothGain = Q12_1;
  742. Ass_FSM = TorqueAssit;
  743. ass_stCalCoef.StartFlag=0;
  744. ass_pvt_uwSmoothFlg = 2;
  745. }
  746. }
  747. else
  748. {
  749. // do nothing
  750. }
  751. // swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  752. // slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  753. // if(slSpdErr < 0)
  754. // {
  755. // slSpdErr = 0;
  756. // }
  757. //// ass_stCalCoef.StartFlag = 1;
  758. // /* Open Voltage Limit according SpdErr*/
  759. // if(ass_stCalCoef.StartFlag == 0)
  760. // {
  761. // slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  762. // if(slTmpVoltLim > scm_swVsDcpLimPu)
  763. // {
  764. // slTmpVoltLim = scm_swVsDcpLimPu;
  765. // }
  766. // else if(slTmpVoltLim <= swTmpVoltPu)
  767. // {
  768. // slTmpVoltLim = swTmpVoltPu;
  769. // }
  770. // else
  771. // {
  772. // //do nothing
  773. // }
  774. // ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  775. //
  776. // /* 电机与踏频转速差小于阈值启动完成 */
  777. // if(slSpdErr <= 1000)
  778. // {
  779. // ass_stCalCoef.StartFlag = 1;
  780. // }
  781. // /* 根据电流环饱和情况判断启动完成 */
  782. //// if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  783. //// {
  784. //// ass_pvt_swVoltCnt++;
  785. //// }
  786. //// else
  787. //// {
  788. //// ass_pvt_swVoltCnt=0;
  789. //// }
  790. //// if(ass_pvt_swVoltCnt > 10)
  791. //// {
  792. //// ass_pvt_swVoltCnt=0;
  793. //// ass_stCalCoef.StartFlag = 1;
  794. //// }
  795. // }
  796. // else if(ass_stCalCoef.StartFlag ==1 )
  797. // {
  798. // if(0 == (AssCnt1ms%5))
  799. // {
  800. // ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  801. // if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  802. // {
  803. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  804. // }
  805. // }
  806. //
  807. // if(slSpdErr <= 100)
  808. // {
  809. // ass_pvt_swVoltCnt++;
  810. // }
  811. // else
  812. // {
  813. // ass_pvt_swVoltCnt--;
  814. // if(ass_pvt_swVoltCnt < 0)
  815. // {
  816. // ass_pvt_swVoltCnt = 0;
  817. // }
  818. // }
  819. // /* Switch to TorqueAssit FSM */
  820. // if(ass_pvt_swVoltCnt > 30)
  821. // {
  822. // Ass_FSM = TorqueAssit;
  823. // ass_stCalCoef.StartFlag=0;
  824. // ass_pvt_swVoltCnt=0;
  825. // }
  826. // }
  827. // else
  828. // {
  829. // //do nothing
  830. // }
  831. /* Switch to ReduceCurrent FSM */
  832. if(((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) || (ass_stCalIn.uwcadance == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  833. {
  834. /* When CandanceFreq=0 or BikeGear=0*/
  835. ass_stCalCoef.swAss2SpdCNT = 0;
  836. Ass_FSM = ReduceCurrent;
  837. }
  838. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  839. {
  840. ass_stCalCoef.swAss2SpdCNT++;
  841. uwTempStopCnt = ((ULONG)1*100 << 14)/ ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  842. if(uwTempStopCnt < 300)
  843. {
  844. uwTempStopCnt = 300;
  845. }
  846. else if(uwTempStopCnt > 2000)
  847. {
  848. uwTempStopCnt = 2000;
  849. }
  850. if(ass_stCalCoef.swAss2SpdCNT > uwTempStopCnt)
  851. {
  852. Ass_FSM = ReduceCurrent;
  853. ass_stCalCoef.swAss2SpdCNT = 0;
  854. ass_stCalCoef.StartFlag=0;
  855. }
  856. }
  857. else
  858. {
  859. ass_stCalCoef.swAss2SpdCNT = 0;
  860. }
  861. break;
  862. case TorqueAssit:
  863. /* 启动系数 */
  864. if(ass_pvt_uwSmoothFlg == 0)
  865. {
  866. ass_stCalCoef.swSmoothGain += ass_stCalCoef.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  867. if(ass_stCalCoef.swSmoothGain >= ass_stCalCoef.uwStartupGain)
  868. {
  869. ass_pvt_uwSmoothFlg = 1;
  870. }
  871. }
  872. else if (ass_pvt_uwSmoothFlg == 1)
  873. {
  874. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  875. {
  876. ass_stCalCoef.swSmoothGain -= (ass_stCalCoef.uwSpeedAssistIMaxA >> 1);
  877. }
  878. else
  879. {
  880. ass_stCalCoef.swSmoothGain = Q12_1;
  881. ass_pvt_uwSmoothFlg = 2;
  882. }
  883. }
  884. else
  885. {
  886. // do nothing
  887. }
  888. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  889. if(0 == (AssCnt1ms%5))
  890. {
  891. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  892. // {
  893. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  894. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  895. {
  896. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  897. }
  898. // }
  899. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  900. // {
  901. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  902. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm))
  903. //// {
  904. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm;
  905. //// }
  906. // }
  907. // else
  908. // {
  909. // }
  910. }
  911. /* TorqueRef Select Coef */
  912. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  913. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  914. {
  915. ass_stCalCoef.swTorqFilterGain = Q14_1;
  916. }
  917. /* Switch to ReduceCurrent FSM */
  918. if(((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) || (ass_stCalIn.uwcadance == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  919. {
  920. /* When CandanceFreq=0 or BikeGear=0*/
  921. ass_stCalOut.blTorqPIFlg = FALSE;
  922. ass_stCalCoef.swAss2SpdCNT = 0;
  923. Ass_FSM = ReduceCurrent;
  924. ass_stCalCoef.StartFlag = 0;
  925. }
  926. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  927. {
  928. ass_stCalCoef.swAss2SpdCNT++;
  929. uwTempStopCnt = ((ULONG)1*100 << 14)/ ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  930. if(uwTempStopCnt < 300)
  931. {
  932. uwTempStopCnt = 300;
  933. }
  934. else if(uwTempStopCnt > 2000)
  935. {
  936. uwTempStopCnt = 2000;
  937. }
  938. if(ass_stCalCoef.swAss2SpdCNT > uwTempStopCnt)
  939. {
  940. ass_stCalCoef.swAss2SpdCNT = 0;
  941. ass_stCalOut.blTorqPIFlg = FALSE;
  942. Ass_FSM = ReduceCurrent;
  943. ass_stCalCoef.StartFlag = 0;
  944. }
  945. }
  946. else
  947. {
  948. ass_stCalCoef.swAss2SpdCNT = 0;
  949. }
  950. break;
  951. case ReduceCurrent:
  952. /* Switch to StopAssit FSM */
  953. if(ass_stCalCoef.swSmoothStopGain <= 0)
  954. {
  955. ass_pvt_uwSmoothFlg = 0;
  956. ass_stCalCoef.swSmoothGain = 0;
  957. ass_stCalCoef.swSmoothStopGain = 0;
  958. ass_stCalCoef.swTorqFilterGain = 0;
  959. ass_stCalCoef.swCadanceGain = 0;
  960. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  961. Ass_FSM = StopAssit;
  962. }
  963. else
  964. {
  965. /* Reduce Curret Coef to Zero*/
  966. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  967. ass_stCalCoef.swSmoothGain -= ass_stCalCoef.uwStartUpGainAddStep;
  968. ass_stCalCoef.swSmoothStopGain -= ass_stCalCoef.uwStartUpGainAddStep;
  969. }
  970. /* Switch to Startup FSM */
  971. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  972. // {
  973. // Ass_FSM = Startup;
  974. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  975. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  976. // }
  977. break;
  978. case StopAssit:
  979. if(ass_stCalIn.uwcadance == 0)
  980. {
  981. startonce = 0;
  982. }
  983. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  984. /* Switch to Startup FSM */
  985. if ((BikeBrake_blGetstate() == FALSE) && (bikegearsensor_blBikeGetState() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  986. {
  987. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold))
  988. {
  989. if (ass_stCalIn.uwcadance > 0)
  990. {
  991. ass_stCalCoef.sw2StopCNT = 0;
  992. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  993. ass_pvt_stCurLpf.slY.sw.hi = 0;
  994. ass_stCalCoef.swSmoothStopGain = Q12_1;
  995. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  996. Ass_FSM = Startup;
  997. }
  998. }
  999. else
  1000. {
  1001. if (ass_stCalIn.uwcadance > 300)
  1002. {
  1003. ass_stCalCoef.sw2StopCNT = 0;
  1004. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  1005. ass_pvt_stCurLpf.slY.sw.hi = 0;
  1006. ass_stCalCoef.swSmoothStopGain = Q12_1;
  1007. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  1008. Ass_FSM = Prepare;
  1009. startonce = 1;
  1010. }
  1011. swPreCurrentPu = 0;
  1012. }
  1013. }
  1014. /* Assit Exit */
  1015. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  1016. {
  1017. ass_stCalCoef.sw2StopCNT++;
  1018. }
  1019. else
  1020. {
  1021. if (ass_stCalCoef.sw2StopCNT >= 1)
  1022. {
  1023. ass_stCalCoef.sw2StopCNT--;
  1024. }
  1025. }
  1026. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE)|| (bikegearsensor_blBikeGetState() == TRUE))// 3s
  1027. {
  1028. ass_stCalCoef.sw2StopCNT = 0;
  1029. ass_stCalCoef.blAssistflag = FALSE;
  1030. }
  1031. break;
  1032. default:
  1033. break;
  1034. }
  1035. /* Bikespeed Limit */
  1036. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  1037. {
  1038. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  1039. }
  1040. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  1041. {
  1042. ass_stCalCoef.swBikeSpeedGain =
  1043. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  1044. uwTorqAccStep = 10;
  1045. uwTorqDecStep = 10;
  1046. }
  1047. else
  1048. {
  1049. ass_stCalCoef.swBikeSpeedGain = 0;
  1050. uwTorqAccStep = 10;
  1051. uwTorqDecStep = 10;
  1052. }
  1053. #if MOTORSPEEDLIMIT_ENABLE
  1054. if (ass_stCalIn.uwSpdFbkAbsPu <= ass_stCurLimCoef.uwMotorSpdThresHold1)
  1055. {
  1056. ass_stCalCoef.swMotorSpeedGain = Q12_1; // Q12
  1057. }
  1058. else if (ass_stCalIn.uwSpdFbkAbsPu > ass_stCurLimCoef.uwMotorSpdThresHold1 && ass_stCalIn.uwSpdFbkAbsPu <= ass_stCurLimCoef.uwMotorSpdThresHold2)
  1059. {
  1060. ass_stCalCoef.swMotorSpeedGain =
  1061. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwSpdFbkAbsPu - (SQWORD)ass_stCurLimCoef.uwMotorSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulMotorSpdDeltInv) >> 8)); // Q12
  1062. }
  1063. else
  1064. {
  1065. ass_stCalCoef.swMotorSpeedGain = 0; // Q12
  1066. }
  1067. #else
  1068. ass_stCalCoef.swMotorSpeedGain = Q12_1; // Q12
  1069. #endif
  1070. /* Assist Current Output in each FSM */
  1071. switch (Ass_FSM)
  1072. {
  1073. case Prepare:
  1074. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * swPreCurrentPu;
  1075. break;
  1076. case Startup:
  1077. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1078. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1079. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1080. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1081. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1082. {
  1083. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1084. }
  1085. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1086. {
  1087. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1088. }
  1089. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  1090. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  1091. if(swPreCurrentPu < ass_stCalOut.swTorRefEnd)
  1092. {
  1093. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  1094. }
  1095. else
  1096. {
  1097. ass_stCalOut.swTorAssistCurrentTemp = (ULONG)ass_stCalIn.swDirection * swPreCurrentPu;
  1098. }
  1099. break;
  1100. case TorqueAssit:
  1101. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1102. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1103. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1104. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1105. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1106. {
  1107. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1108. }
  1109. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1110. {
  1111. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1112. }
  1113. #if CURSWITCH
  1114. /* Ajust CurrentRef growth and decline rate */
  1115. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  1116. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  1117. {
  1118. ass_pvt_uwTorqAccCnt++;
  1119. if(ass_pvt_uwTorqAccCnt >= 2)
  1120. {
  1121. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  1122. ass_pvt_uwTorqAccCnt = 0;
  1123. }
  1124. }
  1125. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  1126. {
  1127. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  1128. {
  1129. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  1130. }
  1131. // ass_pvt_uwTorqDecCnt++;
  1132. // if(ass_pvt_uwTorqDecCnt >= 10)
  1133. // {
  1134. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  1135. // ass_pvt_uwTorqDecCnt = 0;
  1136. // }
  1137. }
  1138. else
  1139. {
  1140. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  1141. }
  1142. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd * ass_stCalCoef.swCadanceGain >> 12;
  1143. /* Torq Clzloop Test */
  1144. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  1145. // {
  1146. // if(!ass_stCalOut.blTorqPIFlg)
  1147. // {
  1148. // /* Initial value */
  1149. // ass_stTorqPIOut.slIRefPu = 0;
  1150. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  1151. // ass_stCalOut.blTorqPIFlg = TRUE;
  1152. // }
  1153. //
  1154. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  1155. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  1156. // ass_stTorqPIIn.swImaxPu = 0;
  1157. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  1158. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  1159. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  1160. // }
  1161. // else
  1162. // {
  1163. // ass_stCalOut.blTorqPIFlg = FALSE;
  1164. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  1165. // }
  1166. #else
  1167. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp)*ass_CalCoef.swCadanceGain >> 12;
  1168. #endif
  1169. break;
  1170. case ReduceCurrent:
  1171. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1172. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1173. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1174. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1175. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1176. {
  1177. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1178. }
  1179. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1180. {
  1181. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1182. }
  1183. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp)*ass_stCalCoef.swCadanceGain >> 12;
  1184. break;
  1185. case StopAssit:
  1186. ass_stCalOut.swTorAssistCurrentTemp = 0;
  1187. ass_stCalOut.swTorRefEnd = 0;
  1188. break;
  1189. default:
  1190. break;
  1191. }
  1192. /* Assist Iqref Output */
  1193. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  1194. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  1195. /* Bikespeed Limit Coef*/
  1196. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  1197. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swMotorSpeedGain >> 12);
  1198. ass_stCalOut.swAssitCurRef = (SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swSmoothStopGain >> 12;
  1199. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  1200. }
  1201. /**
  1202. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  1203. *
  1204. * @param coef polynomial coefficient a, b, c, d
  1205. * @param Value polynomial input value X
  1206. * @param Qnum polynomial input Q type
  1207. * @return UWORD polynomial output Y
  1208. */
  1209. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  1210. {
  1211. /* Limit the Output Current according to Bike Gear */
  1212. UWORD uwIqLimitTemp1;
  1213. if(gear > 5)
  1214. {
  1215. gear = 5;
  1216. }
  1217. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  1218. if(gear > 0)
  1219. {
  1220. uwIqLimitTemp1 = (UWORD)((ULONG)ass_stCalCoef.ucMaxTorqueGain[gear-1] * uwIqLimitTemp1 / 100);//最大力矩增益
  1221. }
  1222. if(uwIqLimitTemp1 > uwCurMaxPu)
  1223. {
  1224. uwIqLimitTemp1 = uwCurMaxPu;//limit to max,can only adjust below max
  1225. }
  1226. #if(GIANT_ENABLE == 1)
  1227. if(stGiantControlParams.MaximumTorque > 0)
  1228. {
  1229. uwIqLimitTemp1 = uwCurMaxPu * stGiantControlParams.MaximumTorque * 10 / 75;
  1230. }
  1231. #endif
  1232. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  1233. }
  1234. /**
  1235. * @brief Assist function
  1236. *
  1237. * @param coef polynomial coefficient a, b, c, d
  1238. * @param Value polynomial input value X
  1239. * @param Qnum polynomial input Q type
  1240. * @return UWORD polynomial output Y
  1241. */
  1242. void ass_voAssist(void)
  1243. {
  1244. #ifdef TEST
  1245. ass_stCalIn.uwtorquePer = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1246. ass_stCalIn.uwtorque = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1247. ass_stCalIn.uwtorquelpf = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1248. ass_stCalIn.uwcadancePer = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1249. ass_stCalIn.uwcadance = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1250. #endif
  1251. /* Start Assist Jduge */
  1252. if (((ass_stCalIn.uwcadance > 0) || (ass_stCalIn.uwtorquePer > 3000)) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  1253. {
  1254. ass_stCalCoef.blAssistflag = TRUE;
  1255. }
  1256. if (ass_stCalCoef.blAssistflag == TRUE)
  1257. {
  1258. /* Calculate Iqref Limit */
  1259. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  1260. ass_stCalCoef.uwCurrentMaxPu = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  1261. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  1262. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  1263. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  1264. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  1265. /* Calculate Assist Current, Iqref*/
  1266. AssitCuvApplPerVolt();
  1267. /* Iqref Limit */
  1268. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1269. {
  1270. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1271. }
  1272. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1273. {
  1274. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1275. }
  1276. else
  1277. {
  1278. //do nothing
  1279. }
  1280. }
  1281. else
  1282. {
  1283. ass_stCalOut.swAssitCurRef = 0;
  1284. }
  1285. }
  1286. /**
  1287. * @brief
  1288. *
  1289. * @param
  1290. * @return
  1291. */
  1292. void ass_voMoveAverageFilter(MAF_IN *in)
  1293. {
  1294. in->slSum -= in->swBuffer[in->uwIndex];
  1295. in->swBuffer[in->uwIndex] = in->swValue;
  1296. in->slSum += (SLONG)in->swValue;
  1297. if (!in->blSecFlag)
  1298. {
  1299. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1300. }
  1301. else
  1302. {
  1303. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1304. }
  1305. in->uwIndex++;
  1306. if (in->uwIndex >= in->uwLength)
  1307. {
  1308. in->blSecFlag = TRUE;
  1309. in->uwIndex = 0;
  1310. }
  1311. }
  1312. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1313. {
  1314. UWORD i;
  1315. in->uwIndex = 0;
  1316. in->slSum = 0;
  1317. in->blSecFlag = FALSE;
  1318. in->slAverValue = 0;
  1319. for (i = 0; i < in->uwLength; i++)
  1320. {
  1321. in->swBuffer[i] = 0;
  1322. }
  1323. }