AssistCurve.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. /******************************
  24. *
  25. * Parameter
  26. *
  27. ******************************/
  28. ASS_FSM_STATUS Ass_FSM;
  29. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  30. ASS_PER_COEF ass_stCalCoef;
  31. ASS_PER_OUT ass_stCalOut;
  32. ASS_PARA_CONFIGURE ass_stParaCong;
  33. ASS_PARA_SET ass_stParaSet;
  34. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  35. ASS_CURLIM_OUT ass_stCurLimOut;
  36. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  37. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  38. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  39. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  40. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  41. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  42. ASS_TORQ_PI_IN ass_stTorqPIIn;
  43. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  44. SWORD ass_swTorqMafBuf[64];
  45. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  46. SWORD ass_swUqLimMafBuf[64];
  47. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  48. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  49. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  50. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  51. /******************************
  52. *
  53. * Function
  54. *
  55. ******************************/
  56. /**
  57. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  58. *
  59. * @param coef polynomial coefficient a, b, c, d
  60. * @param Value polynomial input value X
  61. * @param Qnum polynomial input Q type
  62. * @return UWORD polynomial output Y
  63. */
  64. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  65. {
  66. SLONG out;
  67. SLONG temp_a, temp_b, temp_c;
  68. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  69. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  70. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  71. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  72. out = temp_a + temp_b + temp_c + coef->d;
  73. out = (SLONG)out;
  74. return out;
  75. }
  76. /**
  77. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  78. *
  79. * @param coef original point coefficient z, h, k
  80. * @return POLY_COEF a, b, c, d
  81. */
  82. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  83. //{
  84. // POLY_COEF out;
  85. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  86. // out.a = (SQWORD)0; // Q12
  87. // out.b = (SQWORD)coef->z; // Q12
  88. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  89. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  90. // return out;
  91. //}
  92. /**
  93. * @brief Torque to Current when Id = 0;
  94. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  95. * @param coef polynomial coefficient a, b, c, d
  96. * @param Value polynomial input value X
  97. * @param Qnum polynomial input Q type
  98. * @return UWORD polynomial output Y
  99. */
  100. static SWORD ass_swTorq2CurPu(SWORD Tor)
  101. {
  102. SWORD swCurrentPu;
  103. SWORD swMotorTorqueNotPu;
  104. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  105. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  106. return swCurrentPu;
  107. }
  108. /**
  109. * @brief
  110. *
  111. * @param
  112. * @return
  113. */
  114. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  115. {
  116. UWORD TempAssit;
  117. UWORD TempGear, gear;
  118. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  119. // {
  120. // TempAssit = ass_stParaCong.uwAssistSelect1;
  121. // }
  122. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  123. // {
  124. // TempAssit = ass_stParaCong.uwAssistSelect2;
  125. // }
  126. // else
  127. // {
  128. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  129. // }
  130. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  131. {
  132. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  133. }
  134. else if (ass_stParaCong.uwStartMode == 2)
  135. {
  136. TempAssit = ass_stParaCong.uwAssistSelect1;
  137. }
  138. else if (ass_stParaCong.uwStartMode == 3)
  139. {
  140. TempAssit = ass_stParaCong.uwAssistSelect2;
  141. }
  142. else
  143. {
  144. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  145. }
  146. for (gear = 0; gear < 5; gear++)
  147. {
  148. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  149. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  150. }
  151. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  152. }
  153. /**
  154. * @brief Para from EE Init
  155. *
  156. * @param void
  157. * @return void
  158. */
  159. void ass_voAssitEEInit(void)
  160. {
  161. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  162. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  163. ass_stParaCong.uwMechRationMotor = 35; // Q0
  164. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  165. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  166. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  167. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  168. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  169. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  170. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_VOLTAGE;
  171. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  172. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  173. ass_stParaCong.uwAutoPowerOffTime = BIKE_AUTO_POWER_OFF_TIME;
  174. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  175. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  176. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  177. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  178. ass_stParaSet.uwStartUpGainStep = 25;
  179. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  180. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  181. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  182. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  183. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  184. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  185. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  186. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  187. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  188. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  189. ass_stParaSet.uwAsssistSelectNum = 1;
  190. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  191. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  192. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  193. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  194. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  195. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  196. }
  197. /**
  198. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  199. *
  200. * @param coef polynomial coefficient a, b, c, d
  201. * @param Value polynomial input value X
  202. * @param Qnum polynomial input Q type
  203. * @return UWORD polynomial output Y
  204. */
  205. LPF_OUT ass_pvt_stCurLpf;
  206. void ass_voAssitCoef(void)
  207. {
  208. /*状态机初始化*/
  209. Ass_FSM = StopAssit;
  210. /*电机限制初始化*/
  211. ass_stParaCong.uwCofCurMaxPu = ((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE; // Q14
  212. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  213. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  214. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  215. /*速度环参数初始化*/
  216. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  217. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  218. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  219. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  220. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  221. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  222. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  223. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  224. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  225. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  226. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  227. /*电流限幅计算*/
  228. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  229. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  230. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  231. ass_stCurLimCalBMSCoef.swIqLImitK =
  232. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  233. /*助力曲线初始化*/
  234. ass_voAssistModeSelect();
  235. /*助力启动阈值初始化*/
  236. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  237. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  238. /*助力系数初始化*/
  239. ass_stCalCoef.StartFlag = 0;
  240. ass_stCalCoef.swSmoothGain = 0; // Q12
  241. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  242. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  243. if (ass_stCalCoef.uwStartUpGainAddStep < 1)
  244. {
  245. ass_stCalCoef.uwStartUpGainAddStep = 1;
  246. }
  247. if (ass_stCalCoef.uwStartUpGainAddStep > 50)
  248. {
  249. ass_stCalCoef.uwStartUpGainAddStep = 50;
  250. }
  251. /*设置启动到正常助力最少踏频数*/
  252. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  253. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  254. {
  255. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  256. }
  257. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  258. {
  259. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  260. }
  261. /*设置滑动平均滤波踏频数*/
  262. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  263. ass_stCalCoef.swCadanceGain = 0;
  264. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  265. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  266. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  267. /*初始化计数*/
  268. ass_stCalCoef.uwCadencePeriodCNT = 0;
  269. ass_stCalCoef.swCadanceCNT = 0;
  270. ass_stCalCoef.sw2StopCNT = 0;
  271. ass_stCalCoef.swAss2SpdCNT = 0;
  272. /*配置速度环参数*/
  273. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  274. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  275. ass_stCalCoef.swSpeedlimtrpm = -100;
  276. ass_stCalCoef.swBikeSpeedGain = 0;
  277. /*设置电流限幅*/
  278. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  279. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  280. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  281. /*初始化标志*/
  282. ass_stCalCoef.blAssistflag = FALSE;
  283. ass_stCalOut.swTorAssistSum1 = 0;
  284. ass_stCalOut.swTorAssistSum2 = 0;
  285. ass_stCalOut.swTorAss2CurrentTemp = 0;
  286. ass_stCalOut.swCadAss2CurrentTemp = 0;
  287. ass_stCalOut.swTorAssistCurrentTemp = 0;
  288. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  289. ass_stCalOut.swTorAssistCurrent = 0;
  290. ass_stCalOut.swSpeedRef = 0;
  291. ass_stCalOut.swCadSpd2MotSpd = 0;
  292. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  293. ass_stCurLimCoef.uwLimitGain[1] = 400;
  294. ass_stCurLimCoef.uwLimitGain[2] = 682;
  295. ass_stCurLimCoef.uwLimitGain[3] = 910;
  296. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  297. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  298. ass_stCurLimCoef.uwSpdThresHold = 21845;
  299. /*设置车速限幅*/
  300. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  301. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  302. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  303. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  304. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  305. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  306. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  307. /*设置转矩电流标定系数*/
  308. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  309. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  310. ass_Tor2CurCalCoef.swCalCoefINV =
  311. (((SLONG)1 << 7) * 1000 * 1000) /
  312. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  313. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  314. ass_pvt_stCurLpf.slY.sl = 0;
  315. }
  316. /**
  317. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  318. *
  319. * @param coef polynomial coefficient a, b, c, d
  320. * @param Value polynomial input value X
  321. * @param Qnum polynomial input Q type
  322. * @return UWORD polynomial output Y
  323. */
  324. //void ass_voAssitTorqPIInit(void)
  325. //{
  326. // ass_stTorqPIOut.slIRefPu = 0;
  327. // ass_stTorqPIOut.swErrZ1Pu = 0;
  328. // ass_stTorqPIOut.swIRefPu = 0;
  329. //}
  330. //
  331. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  332. //{
  333. // SLONG slErrPu, slDeltaErrPu;
  334. // SLONG slIpPu, slIiPu;
  335. // SLONG slImaxPu, slIminPu;
  336. // SQWORD sqIRefPu, sqIpPu;
  337. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  338. //
  339. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  340. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  341. //
  342. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  343. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  344. //
  345. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  346. //
  347. // if (slErrPu > 32767)
  348. // {
  349. // slErrPu = 32767;
  350. // }
  351. // else if (slErrPu < -32768)
  352. // {
  353. // slErrPu = -32768;
  354. // }
  355. // else
  356. // {
  357. // /* Nothing */
  358. // }
  359. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  360. // slDeltaErrPu = slErrPu;
  361. // if (slDeltaErrPu > 32767)
  362. // {
  363. // slDeltaErrPu = 32767;
  364. // }
  365. // else if (slDeltaErrPu < -32768)
  366. // {
  367. // slDeltaErrPu = -32768;
  368. // }
  369. // else
  370. // {
  371. // /* Nothing */
  372. // }
  373. //
  374. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  375. // sqIpPu = (SQWORD)slIpPu << 3;
  376. //
  377. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  378. //
  379. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  380. // sqIRefPu = sqIpPu;
  381. //
  382. // if (sqIRefPu > slImaxPu)
  383. // {
  384. // out->slIRefPu = slImaxPu;
  385. // }
  386. // else if (sqIRefPu < slIminPu)
  387. // {
  388. // out->slIRefPu = slIminPu;
  389. // }
  390. // else
  391. // {
  392. // out->slIRefPu = sqIRefPu;
  393. // }
  394. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  395. // out->swErrZ1Pu = (SWORD)slErrPu;
  396. //}
  397. static SWORD ass_pvt_swVoltCnt=0;
  398. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  399. UWORD AssCnt1ms;
  400. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  401. {
  402. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  403. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  404. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  405. SWORD swTmpSpdtoTorqCur;
  406. SLONG slTmpSmoothCur;
  407. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  408. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  409. SWORD swCurSwitch = 0;
  410. SWORD swTmpVoltPu,swTmpVoltPu2;
  411. SLONG slSpdErr,slTmpVoltLim;
  412. SWORD swSpdKpPu = 500; //Q10
  413. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  414. UWORD uwTmpStopCnt = 0;
  415. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  416. /* Select Torq Growth Rate by Bike Gear */
  417. if (ass_stCalIn.uwGearSt == 1)
  418. {
  419. uwTorqAccStep = 50;
  420. }
  421. else if(ass_stCalIn.uwGearSt == 2)
  422. {
  423. uwTorqAccStep = 100;
  424. }
  425. else if(ass_stCalIn.uwGearSt == 3)
  426. {
  427. uwTorqAccStep = 120;
  428. }
  429. else if(ass_stCalIn.uwGearSt == 4)
  430. {
  431. uwTorqAccStep = 150;
  432. }
  433. else if(ass_stCalIn.uwGearSt == 5)
  434. {
  435. uwTorqAccStep = 150;
  436. }
  437. else
  438. {
  439. //do nothing
  440. }
  441. uwTorqDecStep = 80;
  442. AssCnt1ms ++;
  443. if(AssCnt1ms >= 10000)
  444. {
  445. AssCnt1ms = 0;
  446. }
  447. /* Select TorqRef: LPFTorq or MAFTorq */
  448. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  449. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  450. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  451. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  452. {
  453. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  454. }
  455. /* Assist torque Cal using Assist Curve */
  456. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  457. if(ass_stCalIn.uwGearSt == 5)
  458. {
  459. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  460. }
  461. else
  462. {
  463. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  464. }
  465. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  466. {
  467. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  468. }
  469. else
  470. {
  471. //do nothing;
  472. }
  473. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  474. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  475. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  476. {
  477. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  478. }
  479. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  480. {
  481. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  482. }
  483. /* Select Assist Percent of Torq and Candence*/
  484. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  485. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  486. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  487. /* Candance Speed to Motor Speed*/
  488. ass_stCalOut.swCadSpd2MotSpd =
  489. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  490. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  491. /* Back EMF Cal */
  492. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  493. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  494. if (swTmpVoltPu < swTmpVoltPu2)
  495. {
  496. swTmpVoltPu = swTmpVoltPu2;
  497. }
  498. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  499. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  500. /* Assist FSM Control */
  501. switch (Ass_FSM)
  502. {
  503. case Startup:
  504. // ass_stCalCoef.swSmoothGain = Q12_1;
  505. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  506. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  507. {
  508. ass_stCalCoef.swSmoothGain = Q12_1;
  509. }
  510. swSpdKpPu = 2000; //ass_stParaSet.uwStartUpCadNm;
  511. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  512. if(slSpdErr < 0)
  513. {
  514. slSpdErr = 0;
  515. }
  516. // ass_stCalCoef.StartFlag = 1;
  517. /* Open Voltage Limit according SpdErr*/
  518. if(ass_stCalCoef.StartFlag == 0)
  519. {
  520. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  521. if(slTmpVoltLim > scm_swVsDcpLimPu)
  522. {
  523. slTmpVoltLim = scm_swVsDcpLimPu;
  524. }
  525. else if(slTmpVoltLim <= swTmpVoltPu)
  526. {
  527. slTmpVoltLim = swTmpVoltPu;
  528. }
  529. else
  530. {
  531. //do nothing
  532. }
  533. ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  534. // if(slSpdErr <= 1000)
  535. // {
  536. // ass_stCalCoef.StartFlag = 1;
  537. // }
  538. if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  539. {
  540. ass_pvt_swVoltCnt++;
  541. }
  542. else
  543. {
  544. ass_pvt_swVoltCnt=0;
  545. }
  546. if(ass_pvt_swVoltCnt > 10)
  547. {
  548. ass_pvt_swVoltCnt=0;
  549. ass_stCalCoef.StartFlag = 1;
  550. }
  551. }
  552. else if(ass_stCalCoef.StartFlag ==1 )
  553. {
  554. if(0 == (AssCnt1ms%5))
  555. {
  556. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  557. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  558. {
  559. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  560. }
  561. }
  562. if(slSpdErr <= 100)
  563. {
  564. ass_pvt_swVoltCnt++;
  565. }
  566. else
  567. {
  568. ass_pvt_swVoltCnt--;
  569. if(ass_pvt_swVoltCnt < 0)
  570. {
  571. ass_pvt_swVoltCnt = 0;
  572. }
  573. }
  574. /* Switch to TorqueAssit FSM */
  575. if(ass_pvt_swVoltCnt > 30)
  576. {
  577. Ass_FSM = TorqueAssit;
  578. ass_stCalCoef.StartFlag=0;
  579. ass_pvt_swVoltCnt=0;
  580. }
  581. }
  582. else
  583. {
  584. //do nothing
  585. }
  586. /* Switch to ReduceCurrent FSM */
  587. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  588. {
  589. /* When CandanceFreq=0 or BikeGear=0*/
  590. ass_stCalCoef.swAss2SpdCNT = 0;
  591. Ass_FSM = ReduceCurrent;
  592. }
  593. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  594. {
  595. ass_stCalCoef.swAss2SpdCNT++;
  596. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  597. if(uwTmpStopCnt < 200)
  598. {
  599. uwTmpStopCnt = 200;
  600. }
  601. else if(uwTmpStopCnt > 500)
  602. {
  603. uwTmpStopCnt = 500;
  604. }
  605. else
  606. {
  607. //do nothing
  608. }
  609. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  610. {
  611. ass_stCalCoef.swAss2SpdCNT = 0;
  612. Ass_FSM = ReduceCurrent;
  613. }
  614. }
  615. else
  616. {
  617. ass_stCalCoef.swAss2SpdCNT = 0;
  618. }
  619. break;
  620. case TorqueAssit:
  621. /* 启动系数 */
  622. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  623. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  624. {
  625. ass_stCalCoef.swSmoothGain = Q12_1;
  626. }
  627. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  628. if(0 == (AssCnt1ms%5))
  629. {
  630. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  631. // {
  632. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  633. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  634. {
  635. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  636. }
  637. // }
  638. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  639. // {
  640. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  641. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_ParaSet.uwStartUpCadNm))
  642. //// {
  643. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_ParaSet.uwStartUpCadNm;
  644. //// }
  645. // }
  646. // else
  647. // {
  648. // }
  649. }
  650. /* TorqueRef Select Coef */
  651. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  652. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  653. {
  654. ass_stCalCoef.swTorqFilterGain = Q14_1;
  655. }
  656. /* Switch to ReduceCurrent FSM */
  657. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  658. {
  659. /* When CandanceFreq=0 or BikeGear=0*/
  660. ass_stCalOut.blTorqPIFlg = FALSE;
  661. ass_stCalCoef.swAss2SpdCNT = 0;
  662. Ass_FSM = ReduceCurrent;
  663. }
  664. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  665. {
  666. ass_stCalCoef.swAss2SpdCNT++;
  667. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  668. if(uwTmpStopCnt < 200)
  669. {
  670. uwTmpStopCnt = 200;
  671. }
  672. else if(uwTmpStopCnt > 500)
  673. {
  674. uwTmpStopCnt = 500;
  675. }
  676. else
  677. {
  678. //do nothing
  679. }
  680. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  681. {
  682. ass_stCalCoef.swAss2SpdCNT = 0;
  683. ass_stCalOut.blTorqPIFlg = FALSE;
  684. Ass_FSM = ReduceCurrent;
  685. }
  686. }
  687. else
  688. {
  689. ass_stCalCoef.swAss2SpdCNT = 0;
  690. }
  691. break;
  692. case ReduceCurrent:
  693. /* Switch to StopAssit FSM */
  694. if(ass_stCalCoef.swSmoothGain <= 0)
  695. {
  696. ass_stCalCoef.swSmoothGain = 0;
  697. ass_stCalCoef.swTorqFilterGain = 0;
  698. ass_stCalCoef.swCadanceGain = 0;
  699. Ass_FSM = StopAssit;
  700. }
  701. else
  702. {
  703. /* Reduce Curret Coef to Zero*/
  704. ass_stCalCoef.swSmoothGain -=40;
  705. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  706. }
  707. /* Switch to Startup FSM */
  708. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  709. // {
  710. // Ass_FSM = Startup;
  711. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  712. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  713. // }
  714. break;
  715. case StopAssit:
  716. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  717. /* Switch to Startup FSM */
  718. if ((BikeBrake_blGetstate() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  719. {
  720. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  721. {
  722. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  723. {
  724. ass_stCalCoef.sw2StopCNT = 0;
  725. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  726. ass_pvt_stCurLpf.slY.sw.hi = 0;
  727. Ass_FSM = Startup;
  728. }
  729. }
  730. else
  731. {
  732. if (ass_stCalIn.uwtorquelpf > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  733. {
  734. ass_stCalCoef.sw2StopCNT = 0;
  735. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  736. ass_pvt_stCurLpf.slY.sw.hi = 0;
  737. Ass_FSM = Startup;
  738. }
  739. }
  740. }
  741. /* Assit Exit */
  742. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  743. {
  744. ass_stCalCoef.sw2StopCNT++;
  745. }
  746. else
  747. {
  748. if (ass_stCalCoef.sw2StopCNT >= 1)
  749. {
  750. ass_stCalCoef.sw2StopCNT--;
  751. }
  752. }
  753. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE))// 3s
  754. {
  755. ass_stCalCoef.sw2StopCNT = 0;
  756. ass_stCalCoef.blAssistflag = FALSE;
  757. }
  758. break;
  759. default:
  760. break;
  761. }
  762. /* Bikespeed Limit */
  763. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  764. {
  765. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  766. }
  767. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  768. {
  769. ass_stCalCoef.swBikeSpeedGain =
  770. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  771. uwTorqAccStep = 10;
  772. uwTorqDecStep = 10;
  773. }
  774. else
  775. {
  776. ass_stCalCoef.swBikeSpeedGain = 0;
  777. uwTorqAccStep = 10;
  778. uwTorqDecStep = 10;
  779. }
  780. /* Assist Current Output in each FSM */
  781. switch (Ass_FSM)
  782. {
  783. case Startup:
  784. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  785. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  786. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  787. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  788. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  789. {
  790. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  791. }
  792. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  793. {
  794. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  795. }
  796. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  797. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  798. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  799. break;
  800. case TorqueAssit:
  801. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  802. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  803. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  804. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  805. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  806. {
  807. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  808. }
  809. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  810. {
  811. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  812. }
  813. #if CURSWITCH
  814. /* Ajust CurrentRef growth and decline rate */
  815. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  816. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  817. {
  818. ass_pvt_uwTorqAccCnt++;
  819. if(ass_pvt_uwTorqAccCnt >= 2)
  820. {
  821. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  822. ass_pvt_uwTorqAccCnt = 0;
  823. }
  824. }
  825. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  826. {
  827. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  828. {
  829. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  830. }
  831. // ass_pvt_uwTorqDecCnt++;
  832. // if(ass_pvt_uwTorqDecCnt >= 10)
  833. // {
  834. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  835. // ass_pvt_uwTorqDecCnt = 0;
  836. // }
  837. }
  838. else
  839. {
  840. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  841. }
  842. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  843. /* Torq Clzloop Test */
  844. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  845. // {
  846. // if(!ass_stCalOut.blTorqPIFlg)
  847. // {
  848. // /* Initial value */
  849. // ass_stTorqPIOut.slIRefPu = 0;
  850. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  851. // ass_stCalOut.blTorqPIFlg = TRUE;
  852. // }
  853. //
  854. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  855. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  856. // ass_stTorqPIIn.swImaxPu = 0;
  857. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  858. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  859. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  860. // }
  861. // else
  862. // {
  863. // ass_stCalOut.blTorqPIFlg = FALSE;
  864. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  865. // }
  866. #else
  867. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  868. #endif
  869. break;
  870. case ReduceCurrent:
  871. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  872. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  873. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  874. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  875. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  876. {
  877. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  878. }
  879. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  880. {
  881. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  882. }
  883. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  884. break;
  885. case StopAssit:
  886. ass_stCalOut.swTorAssistCurrentTemp = 0;
  887. ass_stCalOut.swTorRefEnd = 0;
  888. break;
  889. default:
  890. break;
  891. }
  892. /* Assist Iqref Output */
  893. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  894. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  895. /* Bikespeed Limit Coef*/
  896. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  897. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  898. }
  899. /**
  900. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  901. *
  902. * @param coef polynomial coefficient a, b, c, d
  903. * @param Value polynomial input value X
  904. * @param Qnum polynomial input Q type
  905. * @return UWORD polynomial output Y
  906. */
  907. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  908. {
  909. /* Limit the Output Current according to Bike Gear */
  910. UWORD uwIqLimitTemp1;
  911. if(gear > 5)
  912. {
  913. gear = 5;
  914. }
  915. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  916. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  917. }
  918. /**
  919. * @brief
  920. *
  921. * @param
  922. * @return
  923. */
  924. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  925. {
  926. /* Limit the Output Current according to Bike SOC */
  927. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  928. {
  929. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  930. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - ((ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  931. }
  932. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  933. {
  934. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  935. }
  936. else
  937. {
  938. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  939. }
  940. }
  941. /**
  942. * @brief Assist function
  943. *
  944. * @param coef polynomial coefficient a, b, c, d
  945. * @param Value polynomial input value X
  946. * @param Qnum polynomial input Q type
  947. * @return UWORD polynomial output Y
  948. */
  949. void ass_voAssist(void)
  950. {
  951. /* Start Assist Jduge */
  952. if (((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) || ass_stCalIn.uwtorquePer > 3000) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  953. {
  954. ass_stCalCoef.blAssistflag = TRUE;
  955. }
  956. if (ass_stCalCoef.blAssistflag == TRUE)
  957. {
  958. /* Calculate Iqref Limit */
  959. UWORD uwIqLimitTemp;
  960. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  961. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  962. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  963. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  964. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  965. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  966. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  967. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  968. /* Calculate Assist Current, Iqref*/
  969. AssitCuvApplPerVolt();
  970. /* Iqref Limit */
  971. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  972. {
  973. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  974. }
  975. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  976. {
  977. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  978. }
  979. else
  980. {
  981. //do nothing
  982. }
  983. }
  984. else
  985. {
  986. ass_stCalOut.swAssitCurRef = 0;
  987. }
  988. }
  989. /**
  990. * @brief
  991. *
  992. * @param
  993. * @return
  994. */
  995. void ass_voMoveAverageFilter(MAF_IN *in)
  996. {
  997. in->slSum -= in->swBuffer[in->uwIndex];
  998. in->swBuffer[in->uwIndex] = in->swValue;
  999. in->slSum += (SLONG)in->swValue;
  1000. if (!in->blSecFlag)
  1001. {
  1002. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1003. }
  1004. else
  1005. {
  1006. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1007. }
  1008. in->uwIndex++;
  1009. if (in->uwIndex >= in->uwLength)
  1010. {
  1011. in->blSecFlag = TRUE;
  1012. in->uwIndex = 0;
  1013. }
  1014. }
  1015. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1016. {
  1017. UWORD i;
  1018. in->uwIndex = 0;
  1019. in->slSum = 0;
  1020. in->blSecFlag = FALSE;
  1021. for (i = 0; i < 64; i++)
  1022. {
  1023. in->swBuffer[i] = 0;
  1024. }
  1025. }