adc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "Temp.h"
  28. #include "api.h"
  29. #include "api_rt.h"
  30. /************************************************************************
  31. Constant Table:
  32. *************************************************************************/
  33. /************************************************************************
  34. Exported Functions:
  35. *************************************************************************/
  36. /***************************************************************
  37. Function: adc_voCalibration;
  38. Description: Get phase A and B current zero point, other A/D sample value
  39. Call by: main() before InitADC;
  40. Input Variables: N/A
  41. Output/Return Variables: ADCTESTOUT
  42. Subroutine Call: N/A
  43. Reference: N/A
  44. ****************************************************************/
  45. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  46. {
  47. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  48. {
  49. if (!hw_blChrgOvrFlg)
  50. {
  51. hw_voCharge();
  52. }
  53. else
  54. {
  55. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  56. {
  57. ULONG samplingTick[2];
  58. samplingTick[0]=HW_HHHPWM_PERIOD;
  59. samplingTick[1]=129;
  60. iPwm_SyncMultiSamplingCountUp(0, &samplingTick[0], 2);
  61. pwm_stGenOut.blSampleCalibFlag = TRUE;
  62. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  63. {
  64. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH];
  65. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  66. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  67. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  68. out1->uwADCCalibCt++;
  69. }
  70. else
  71. {
  72. hw_voPWMInit(); // mos up charge and adc calib over; pwm off
  73. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  74. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  75. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  76. out1->ulIaRegSum = 0;
  77. out1->ulIbRegSum = 0;
  78. out1->ulIcRegSum = 0;
  79. pwm_stGenOut.blSampleCalibFlag = FALSE;
  80. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> ADC_CALIB_INDEX);
  81. out1->ulIdcRegSum = 0;
  82. out1->uwADCCalibCt = 0;
  83. out1->blADCCalibFlg = TRUE;
  84. out2->uwADCCalibCt = 0;
  85. out2->blADCCalibFlg = TRUE;
  86. }
  87. }
  88. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  89. {
  90. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  91. {
  92. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] + adc_uwADDMAPhase2;
  93. out1->uwADCCalibCt++;
  94. }
  95. else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  96. {
  97. out2->uwADCCalibCt++;
  98. }
  99. else
  100. {
  101. hw_voPWMInit();
  102. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1));
  103. out1->ulIdcRegSum = 0;
  104. out1->uwADCCalibCt = 0;
  105. out1->blADCCalibFlg = TRUE;
  106. out2->uwADCCalibCt = 0;
  107. out2->blADCCalibFlg = TRUE;
  108. }
  109. }
  110. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  111. {
  112. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  113. {
  114. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  115. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  116. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  117. out1->uwADCCalibCt++;
  118. }
  119. else
  120. {
  121. hw_voPWMInit();
  122. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  123. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  124. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  125. out1->ulIaRegSum = 0;
  126. out1->ulIbRegSum = 0;
  127. out1->ulIcRegSum = 0;
  128. out1->uwADCCalibCt = 0;
  129. out1->blADCCalibFlg = TRUE;
  130. out2->uwADCCalibCt = 0;
  131. out2->blADCCalibFlg = TRUE;
  132. }
  133. }
  134. else
  135. {
  136. //do noting
  137. }
  138. }
  139. }
  140. }
  141. /***************************************************************
  142. Function: adc_voSample;
  143. Description: Get three-phase current value after zero point and gain process
  144. Call by: functions in TBC;
  145. Input Variables: ADCIABFIXCOF
  146. Output/Return Variables: ADCTESTOUT
  147. Subroutine Call:
  148. Reference: N/A
  149. ****************************************************************/
  150. void adc_voSampleDown(const ADC_COF *cof, ADC_DOWN_OUT *out) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  151. {
  152. UWORD uwIpeakPu;
  153. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  154. {
  155. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  156. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  157. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  158. out->slSampIaPu = -(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  159. out->slSampIbPu = -(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  160. out->slSampIcPu = -(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  161. out->swIaPu = (SWORD)((out->slSampIaPu * (SLONG)cof->uwCalibcoef) >> 10);
  162. out->swIbPu = (SWORD)((out->slSampIbPu * (SLONG)cof->uwCalibcoef) >> 10);
  163. out->swIcPu = (SWORD)((out->slSampIcPu * (SLONG)cof->uwCalibcoef) >> 10);
  164. }
  165. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  166. {
  167. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  168. /* Register value */
  169. out->uwFirstCurREG = iAdc_GetResultPointer(2)[HW_ADC_IDC_CH]; // Q12
  170. out->uwSecondCurREG = adc_uwADDMAPhase2; // Q12
  171. tmp_swIphase1 = (SWORD)out->uwFirstCurREG - (SWORD)cof->uwIdcOffset;
  172. tmp_swIphase1 = (SWORD)((tmp_swIphase1 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  173. tmp_swIphase2 = (SWORD)cof->uwIdcOffset - (SWORD)out->uwSecondCurREG;
  174. tmp_swIphase2 = (SWORD)((tmp_swIphase2 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  175. tmp_swIphase3 = (SWORD)out->uwSecondCurREG - (SWORD)out->uwFirstCurREG;
  176. tmp_swIphase3 = (SWORD)((tmp_swIphase3 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  177. out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  178. switch (pwm_stGenOut.uwNewSectorNum)
  179. {
  180. case 1:
  181. out->swIbPu = tmp_swIphase1; // v
  182. out->swIcPu = tmp_swIphase2; //-w
  183. out->swIaPu = tmp_swIphase3; // u
  184. break;
  185. case 2:
  186. out->swIaPu = tmp_swIphase1; // u
  187. out->swIbPu = tmp_swIphase2; //-v
  188. out->swIcPu = tmp_swIphase3;
  189. break;
  190. case 3:
  191. out->swIaPu = tmp_swIphase1; // u
  192. out->swIcPu = tmp_swIphase2; //-w
  193. out->swIbPu = tmp_swIphase3;
  194. break;
  195. case 4:
  196. out->swIcPu = tmp_swIphase1; // w
  197. out->swIaPu = tmp_swIphase2; //-u
  198. out->swIbPu = tmp_swIphase3;
  199. break;
  200. case 5:
  201. out->swIbPu = tmp_swIphase1; // v
  202. out->swIaPu = tmp_swIphase2; //-u
  203. out->swIcPu = tmp_swIphase3;
  204. break;
  205. case 6:
  206. out->swIcPu = tmp_swIphase1; // w
  207. out->swIbPu = tmp_swIphase2; //-v
  208. out->swIaPu = tmp_swIphase3;
  209. break;
  210. default:
  211. out->swIaPu = 0;
  212. out->swIbPu = 0;
  213. out->swIcPu = 0;
  214. break;
  215. }
  216. }
  217. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  218. {
  219. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  220. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  221. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  222. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  223. tmp_swIphase1 = (SWORD)-(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  224. tmp_swIphase2 = (SWORD)-(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  225. tmp_swIphase3 = (SWORD)-(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  226. switch (pwm_stGenOut.uwSampleArea)
  227. {
  228. case IgnoreNone:
  229. out->swIaPu = tmp_swIphase1;
  230. out->swIbPu = tmp_swIphase2;
  231. out->swIcPu = tmp_swIphase3;
  232. break;
  233. case IgnoreA:
  234. out->swIaPu = -tmp_swIphase2 - tmp_swIphase3;
  235. out->swIbPu = tmp_swIphase2;
  236. out->swIcPu = tmp_swIphase3;
  237. break;
  238. case IgnoreB:
  239. out->swIaPu = tmp_swIphase1;
  240. out->swIbPu = -tmp_swIphase1 - tmp_swIphase3;
  241. out->swIcPu = tmp_swIphase3;
  242. break;
  243. case IgnoreC:
  244. out->swIaPu = tmp_swIphase1;
  245. out->swIbPu = tmp_swIphase2;
  246. out->swIcPu = tmp_swIphase3;
  247. break;
  248. case IgnoreAB:
  249. out->swIaPu = -tmp_swIphase3 >> 1;
  250. out->swIbPu = -tmp_swIphase3 >> 1;
  251. out->swIcPu = tmp_swIphase3;
  252. break;
  253. case IgnoreBC:
  254. out->swIaPu = tmp_swIphase1;
  255. out->swIbPu = -tmp_swIphase1 >> 1;
  256. out->swIcPu = -tmp_swIphase1 >> 1;
  257. break;
  258. case IgnoreAC:
  259. out->swIaPu = -tmp_swIphase2 >> 1;
  260. out->swIbPu = tmp_swIphase2;
  261. out->swIcPu = -tmp_swIphase2 >> 1;
  262. break;
  263. default:
  264. break;
  265. }
  266. }
  267. else
  268. {
  269. //do nothing
  270. }
  271. /* Current absolute value & max value */
  272. if ((out->swIaPu) >= 0)
  273. {
  274. out->uwIaAbsPu = (UWORD)out->swIaPu;
  275. }
  276. else
  277. {
  278. out->uwIaAbsPu = (UWORD)-out->swIaPu;
  279. }
  280. if ((out->swIbPu) >= 0)
  281. {
  282. out->uwIbAbsPu = (UWORD)out->swIbPu;
  283. }
  284. else
  285. {
  286. out->uwIbAbsPu = (UWORD)-out->swIbPu;
  287. }
  288. if ((out->swIcPu) >= 0)
  289. {
  290. out->uwIcAbsPu = (UWORD)out->swIcPu;
  291. }
  292. else
  293. {
  294. out->uwIcAbsPu = (UWORD)-out->swIcPu;
  295. }
  296. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  297. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  298. out->uwIpeakPu = uwIpeakPu;
  299. }
  300. void adc_voSampleUp(const ADC_COF *cof, ADC_UP_OUT *out)
  301. {
  302. /* Register value */
  303. out->uwVdcReg = iAdc_GetResultPointer(0)[HW_ADC_UDC_CH];
  304. out->uwU6VReg = iAdc_GetResultPointer(0)[HW_ADC_U6V_CH];
  305. out->uwU5VReg = iAdc_GetResultPointer(0)[HW_ADC_U5V_CH];
  306. out->PCBTempReg = iAdc_GetResultPointer(0)[HW_ADC_PCBTEMP_CH];
  307. out->TorqTempReg = iAdc_GetResultPointer(0)[HW_ADC_MOTTEMP_CH];
  308. out->uwU12VReg = iAdc_GetResultPointer(0)[HW_ADC_U12V_CH];
  309. out->uwThrottleReg = iAdc_GetResultPointer(0)[HW_ADC_THRO_CH];
  310. out->uwVdcPu = (UWORD)((ULONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10); // Q14=Q24-Q10
  311. /* Vdc LPF */
  312. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  313. out->uwU6VPu = (UWORD)((ULONG)out->uwU6VReg * cof->uwU6VReg2Pu >> 10); // Q14=Q24-Q10;
  314. out->uwU5VPu = (UWORD)((ULONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10); // Q14=Q24-Q10;
  315. out->uwU12VPu = (UWORD)((ULONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10); // Q14=Q24-Q10;
  316. out->MotorTempR = out->MotorTempReg * cof->swMotorTempKcof >> 10; // Q14=Q24-Q10;
  317. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  318. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  319. {
  320. switch (pwm_stGenOut.uwSingelRSampleArea)
  321. {
  322. case 0:
  323. out->swCalibIaPu = 0;
  324. out->swCalibIbPu = 0;
  325. out->swCalibIcPu = 0;
  326. break;
  327. case SampleA:
  328. out->swCalibIaPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  329. break;
  330. case SampleB:
  331. out->swCalibIbPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  332. break;
  333. case SampleC:
  334. out->swCalibIcPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  335. break;
  336. default:
  337. break;
  338. }
  339. }
  340. ////////////////// PCB TEMP//////////////////////////////////////////////////////
  341. out->PCBTempR = (UWORD)((ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER); // Q14=Q24-Q10;
  342. PcbTempCal((SWORD)out->PCBTempR);
  343. out->PCBTemp = tmp_PcbTemp;
  344. }
  345. static SWORD adc_pvt_swSingleReg;
  346. static SLONG adc_pvt_slRdsonReg;
  347. static LPF_OUT adc_pvt_stRdsonCoefLpf;
  348. static UWORD adc_pvt_uwCalGainFlg;
  349. static ULONG adc_pvt_ulGainTemp1;
  350. void adc_voSRCalibration(ADC_COF *cof, const ADC_UP_OUT *up_out, const ADC_DOWN_OUT *down_out)
  351. {
  352. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  353. {
  354. switch (pwm_stGenOut.uwSingelRSampleArea)
  355. {
  356. case 0:
  357. break;
  358. case SampleA:
  359. if(adc_pvt_swSingleReg > up_out->swCalibIaPu)
  360. {
  361. adc_pvt_swSingleReg = up_out->swCalibIaPu;
  362. }
  363. if(adc_pvt_slRdsonReg > down_out->slSampIaPu)
  364. {
  365. adc_pvt_slRdsonReg = down_out->slSampIaPu;
  366. }
  367. break;
  368. case SampleB:
  369. if(adc_pvt_swSingleReg > up_out->swCalibIbPu)
  370. {
  371. adc_pvt_swSingleReg = up_out->swCalibIbPu;
  372. }
  373. if(adc_pvt_slRdsonReg > down_out->slSampIbPu)
  374. {
  375. adc_pvt_slRdsonReg = down_out->slSampIbPu;
  376. }
  377. break;
  378. case SampleC:
  379. if(adc_pvt_swSingleReg > up_out->swCalibIcPu)
  380. {
  381. adc_pvt_swSingleReg = up_out->swCalibIcPu;
  382. }
  383. if(adc_pvt_slRdsonReg > down_out->slSampIcPu)
  384. {
  385. adc_pvt_slRdsonReg = down_out->slSampIcPu;
  386. }
  387. break;
  388. default:
  389. break;
  390. }
  391. adc_pvt_uwCalGainFlg = 1;
  392. }
  393. else
  394. {
  395. if(scm_uwSpdFbkLpfAbsPu <= 2500)
  396. {
  397. adc_pvt_ulGainTemp1 = 1300;
  398. }
  399. else
  400. {
  401. if(adc_pvt_uwCalGainFlg ==1)
  402. {
  403. adc_pvt_ulGainTemp1 = (SLONG)((SLONG)adc_pvt_swSingleReg << 10) / (SLONG)adc_pvt_slRdsonReg;
  404. if(adc_pvt_ulGainTemp1 > cof->uwCalibcoefMax)
  405. {
  406. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMax;
  407. }
  408. else if(adc_pvt_ulGainTemp1 < cof->uwCalibcoefMin)
  409. {
  410. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMin;
  411. }
  412. else
  413. {
  414. //do nothing
  415. }
  416. adc_pvt_uwCalGainFlg = 0;
  417. }
  418. else
  419. {
  420. adc_pvt_swSingleReg = 0;
  421. adc_pvt_slRdsonReg = 0;
  422. }
  423. }
  424. mth_voLPFilter((SWORD)adc_pvt_ulGainTemp1, &adc_pvt_stRdsonCoefLpf);
  425. cof->uwCalibcoef = adc_pvt_stRdsonCoefLpf.slY.sw.hi;
  426. }
  427. ////////////////////////////////////////////////////////////////////////////////////
  428. }
  429. /***************************************************************
  430. Function: adc_voSampleCoef;
  431. Description: Get other A/D sample value
  432. Call by: functions in Mainloop;
  433. Input Variables: ADCIABFIXCOF
  434. Output/Return Variables: ADCTESTOUT
  435. Subroutine Call:
  436. Reference: N/A
  437. ****************************************************************/
  438. void adc_voSampleCoef(ADC_COF *cof)
  439. {
  440. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  441. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  442. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  443. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  444. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  445. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  446. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  447. cof->uwCalibcoef = 1024;
  448. cof->uwCalibcoefMax = 2048;
  449. cof->uwCalibcoefMin = 200;
  450. cof->uwCalibCoefK = 160; // q10
  451. mth_voLPFilterCoef(1000000 / 30, FTBC_HZ, &adc_pvt_stRdsonCoefLpf.uwKx); //100Hz
  452. }
  453. /***************************************************************
  454. Function: adc_voSampleInit;
  455. Description: ADC sample initialization
  456. Call by: mn_voSoftwareInit;
  457. Input Variables: N/A
  458. Output/Return Variables: N/A
  459. Subroutine Call:
  460. Reference: N/A
  461. ****************************************************************/
  462. void adc_voSampleInit(void)
  463. {
  464. adc_stDownOut.swIaPu = 0;
  465. adc_stDownOut.swIbPu = 0;
  466. adc_stDownOut.swIcPu = 0;
  467. adc_stDownOut.uwIaAbsPu = 0;
  468. adc_stDownOut.uwIbAbsPu = 0;
  469. adc_stDownOut.uwIcAbsPu = 0;
  470. adc_stDownOut.uwIpeakPu = 0;
  471. adc_stDownOut.uwIaReg = 0;
  472. adc_stDownOut.uwIbReg = 0;
  473. adc_stDownOut.uwIcReg = 0;
  474. adc_stDownOut.uwFirstCurREG = 0;
  475. adc_stDownOut.uwSecondCurREG = 0;
  476. adc_stDownOut.uwADCSector = 0;
  477. adc_stDownOut.uwIaAvgPu = 0;
  478. adc_stDownOut.uwIbAvgPu = 0;
  479. adc_stDownOut.uwIcAvgPu = 0;
  480. adc_stUpOut.uwVdcPu = 0;
  481. adc_stUpOut.uwVdcLpfPu = 0;
  482. adc_stUpOut.uwU6VPu = 0;
  483. adc_stUpOut.uwU5VPu = 0;
  484. adc_stUpOut.uwU12VPu = 0;
  485. adc_stUpOut.uwTrottlePu = 0;
  486. adc_stUpOut.PCBTemp = 0;
  487. adc_stUpOut.MotorTemp = 0;
  488. adc_stUpOut.uwVdcReg = 0;
  489. adc_stUpOut.uwU6VReg = 0;
  490. adc_stUpOut.uwU5VReg = 0;
  491. adc_stUpOut.uwU12VReg = 0;
  492. adc_stUpOut.uwThrottleReg = 0;
  493. adc_stUpOut.PCBTempReg = 0;
  494. adc_stUpOut.MotorTempReg = 0;
  495. adc_stUpOut.swCalibIaPu = 0;
  496. adc_stUpOut.swCalibIbPu = 0;
  497. adc_stUpOut.swCalibIcPu = 0;
  498. adc_stDownOut.ulUaRegSum = 0;
  499. adc_stDownOut.ulUbRegSum = 0;
  500. adc_stDownOut.ulUcRegSum = 0;
  501. adc_stDownOut.ulIdcRegSum = 0;
  502. adc_stDownOut.ulIaRegSum = 0;
  503. adc_stDownOut.ulIbRegSum = 0;
  504. adc_stDownOut.ulIcRegSum = 0;
  505. adc_stDownOut.uwADCCalibCt = 0;
  506. adc_stDownOut.blADCCalibFlg = FALSE;
  507. adc_stUpOut.uwADCCalibCt = 0;
  508. adc_stUpOut.blADCCalibFlg = FALSE;
  509. adc_stUpOut.swIPMTempCe = 0;
  510. }
  511. /*************************************************************************
  512. Local Functions (N/A)
  513. *************************************************************************/
  514. /************************************************************************
  515. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  516. All rights reserved.
  517. *************************************************************************/
  518. #ifdef _ADCDRV_C_
  519. #undef _ADCDRV_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  520. #endif
  521. /*************************************************************************
  522. End of this File (EOF)!
  523. Do not put anything after this part!
  524. *************************************************************************/