AssistCurve.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. /******************************
  24. *
  25. * Parameter
  26. *
  27. ******************************/
  28. ASS_FSM_STATUS Ass_FSM;
  29. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  30. ASS_PER_COEF ass_stCalCoef;
  31. ASS_PER_OUT ass_stCalOut;
  32. ASS_PARA_CONFIGURE ass_stParaCong;
  33. ASS_PARA_SET ass_stParaSet;
  34. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  35. ASS_CURLIM_OUT ass_stCurLimOut;
  36. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  37. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  38. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  39. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  40. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  41. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  42. ASS_TORQ_PI_IN ass_stTorqPIIn;
  43. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  44. SWORD ass_swTorqMafBuf[64];
  45. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  46. SWORD ass_swUqLimMafBuf[64];
  47. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  48. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  49. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  50. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  51. /******************************
  52. *
  53. * Function
  54. *
  55. ******************************/
  56. /**
  57. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  58. *
  59. * @param coef polynomial coefficient a, b, c, d
  60. * @param Value polynomial input value X
  61. * @param Qnum polynomial input Q type
  62. * @return UWORD polynomial output Y
  63. */
  64. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  65. {
  66. SLONG out;
  67. SLONG temp_a, temp_b, temp_c;
  68. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  69. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  70. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  71. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  72. out = temp_a + temp_b + temp_c + coef->d;
  73. out = (SLONG)out;
  74. return out;
  75. }
  76. /**
  77. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  78. *
  79. * @param coef original point coefficient z, h, k
  80. * @return POLY_COEF a, b, c, d
  81. */
  82. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  83. //{
  84. // POLY_COEF out;
  85. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  86. // out.a = (SQWORD)0; // Q12
  87. // out.b = (SQWORD)coef->z; // Q12
  88. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  89. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  90. // return out;
  91. //}
  92. /**
  93. * @brief Torque to Current when Id = 0;
  94. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  95. * @param coef polynomial coefficient a, b, c, d
  96. * @param Value polynomial input value X
  97. * @param Qnum polynomial input Q type
  98. * @return UWORD polynomial output Y
  99. */
  100. static SWORD ass_swTorq2CurPu(SWORD Tor)
  101. {
  102. SWORD swCurrentPu;
  103. SWORD swMotorTorqueNotPu;
  104. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  105. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  106. return swCurrentPu;
  107. }
  108. /**
  109. * @brief
  110. *
  111. * @param
  112. * @return
  113. */
  114. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  115. {
  116. UWORD TempAssit;
  117. UWORD TempGear, gear;
  118. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  119. // {
  120. // TempAssit = ass_stParaCong.uwAssistSelect1;
  121. // }
  122. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  123. // {
  124. // TempAssit = ass_stParaCong.uwAssistSelect2;
  125. // }
  126. // else
  127. // {
  128. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  129. // }
  130. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  131. {
  132. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  133. }
  134. else if (ass_stParaCong.uwStartMode == 2)
  135. {
  136. TempAssit = ass_stParaCong.uwAssistSelect1;
  137. }
  138. else if (ass_stParaCong.uwStartMode == 3)
  139. {
  140. TempAssit = ass_stParaCong.uwAssistSelect2;
  141. }
  142. else
  143. {
  144. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  145. }
  146. for (gear = 0; gear < 5; gear++)
  147. {
  148. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  149. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  150. }
  151. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  152. }
  153. /**
  154. * @brief Para from EE Init
  155. *
  156. * @param void
  157. * @return void
  158. */
  159. void ass_voAssitEEInit(void)
  160. {
  161. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  162. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  163. ass_stParaCong.uwMechRationMotor = 35; // Q0
  164. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  165. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  166. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  167. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  168. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  169. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  170. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_VOLTAGE;
  171. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  172. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  173. ass_stParaCong.uwAutoPowerOffTime = BIKE_AUTO_POWER_OFF_TIME;
  174. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  175. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  176. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  177. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  178. ass_stParaSet.uwStartUpGainStep = 25;
  179. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  180. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  181. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  182. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  183. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  184. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  185. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  186. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  187. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  188. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  189. ass_stParaSet.uwAsssistSelectNum = 1;
  190. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  191. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  192. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  193. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  194. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  195. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  196. }
  197. /**
  198. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  199. *
  200. * @param coef polynomial coefficient a, b, c, d
  201. * @param Value polynomial input value X
  202. * @param Qnum polynomial input Q type
  203. * @return UWORD polynomial output Y
  204. */
  205. LPF_OUT ass_pvt_stCurLpf;
  206. void ass_voAssitCoef(void)
  207. {
  208. /*状态机初始化*/
  209. Ass_FSM = StopAssit;
  210. /*电机限制初始化*/
  211. ass_stParaCong.uwCofCurMaxPu = ((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE; // Q14
  212. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  213. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  214. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  215. /*速度环参数初始化*/
  216. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  217. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  218. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  219. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  220. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  221. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  222. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  223. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  224. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  225. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  226. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  227. /*电流限幅计算*/
  228. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  229. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  230. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  231. ass_stCurLimCalBMSCoef.swIqLImitK =
  232. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  233. /*助力曲线初始化*/
  234. ass_voAssistModeSelect();
  235. /*助力启动阈值初始化*/
  236. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  237. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  238. /*助力系数初始化*/
  239. ass_stCalCoef.StartFlag = 0;
  240. ass_stCalCoef.swSmoothGain = 0; // Q12
  241. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  242. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  243. if (ass_stCalCoef.uwStartUpGainAddStep < 1)
  244. {
  245. ass_stCalCoef.uwStartUpGainAddStep = 1;
  246. }
  247. if (ass_stCalCoef.uwStartUpGainAddStep > 50)
  248. {
  249. ass_stCalCoef.uwStartUpGainAddStep = 50;
  250. }
  251. /*设置启动到正常助力最少踏频数*/
  252. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  253. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  254. {
  255. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  256. }
  257. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  258. {
  259. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  260. }
  261. /*设置滑动平均滤波踏频数*/
  262. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  263. ass_stCalCoef.swCadanceGain = 0;
  264. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  265. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  266. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  267. /*初始化计数*/
  268. ass_stCalCoef.uwCadencePeriodCNT = 0;
  269. ass_stCalCoef.swCadanceCNT = 0;
  270. ass_stCalCoef.sw2StopCNT = 0;
  271. ass_stCalCoef.swAss2SpdCNT = 0;
  272. /*配置速度环参数*/
  273. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  274. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  275. ass_stCalCoef.swSpeedlimtrpm = -100;
  276. ass_stCalCoef.swBikeSpeedGain = 0;
  277. /*设置电流限幅*/
  278. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  279. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  280. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  281. /*初始化标志*/
  282. ass_stCalCoef.blAssistflag = FALSE;
  283. ass_stCalOut.swTorAssistSum1 = 0;
  284. ass_stCalOut.swTorAssistSum2 = 0;
  285. ass_stCalOut.swTorAss2CurrentTemp = 0;
  286. ass_stCalOut.swCadAss2CurrentTemp = 0;
  287. ass_stCalOut.swTorAssistCurrentTemp = 0;
  288. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  289. ass_stCalOut.swTorAssistCurrent = 0;
  290. ass_stCalOut.swSpeedRef = 0;
  291. ass_stCalOut.swCadSpd2MotSpd = 0;
  292. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  293. ass_stCurLimCoef.uwLimitGain[1] = 400;
  294. ass_stCurLimCoef.uwLimitGain[2] = 682;
  295. ass_stCurLimCoef.uwLimitGain[3] = 910;
  296. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  297. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  298. ass_stCurLimCoef.uwSpdThresHold = 21845;
  299. /*设置车速限幅*/
  300. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  301. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  302. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  303. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  304. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  305. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  306. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  307. /*设置转矩电流标定系数*/
  308. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  309. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  310. ass_Tor2CurCalCoef.swCalCoefINV =
  311. (((SLONG)1 << 7) * 1000 * 1000) /
  312. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  313. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  314. ass_pvt_stCurLpf.slY.sl = 0;
  315. }
  316. /**
  317. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  318. *
  319. * @param coef polynomial coefficient a, b, c, d
  320. * @param Value polynomial input value X
  321. * @param Qnum polynomial input Q type
  322. * @return UWORD polynomial output Y
  323. */
  324. //void ass_voAssitTorqPIInit(void)
  325. //{
  326. // ass_stTorqPIOut.slIRefPu = 0;
  327. // ass_stTorqPIOut.swErrZ1Pu = 0;
  328. // ass_stTorqPIOut.swIRefPu = 0;
  329. //}
  330. //
  331. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  332. //{
  333. // SLONG slErrPu, slDeltaErrPu;
  334. // SLONG slIpPu, slIiPu;
  335. // SLONG slImaxPu, slIminPu;
  336. // SQWORD sqIRefPu, sqIpPu;
  337. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  338. //
  339. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  340. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  341. //
  342. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  343. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  344. //
  345. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  346. //
  347. // if (slErrPu > 32767)
  348. // {
  349. // slErrPu = 32767;
  350. // }
  351. // else if (slErrPu < -32768)
  352. // {
  353. // slErrPu = -32768;
  354. // }
  355. // else
  356. // {
  357. // /* Nothing */
  358. // }
  359. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  360. // slDeltaErrPu = slErrPu;
  361. // if (slDeltaErrPu > 32767)
  362. // {
  363. // slDeltaErrPu = 32767;
  364. // }
  365. // else if (slDeltaErrPu < -32768)
  366. // {
  367. // slDeltaErrPu = -32768;
  368. // }
  369. // else
  370. // {
  371. // /* Nothing */
  372. // }
  373. //
  374. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  375. // sqIpPu = (SQWORD)slIpPu << 3;
  376. //
  377. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  378. //
  379. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  380. // sqIRefPu = sqIpPu;
  381. //
  382. // if (sqIRefPu > slImaxPu)
  383. // {
  384. // out->slIRefPu = slImaxPu;
  385. // }
  386. // else if (sqIRefPu < slIminPu)
  387. // {
  388. // out->slIRefPu = slIminPu;
  389. // }
  390. // else
  391. // {
  392. // out->slIRefPu = sqIRefPu;
  393. // }
  394. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  395. // out->swErrZ1Pu = (SWORD)slErrPu;
  396. //}
  397. static SWORD ass_pvt_swVoltCnt=0;
  398. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  399. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  400. {
  401. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  402. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  403. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  404. SWORD swTmpSpdtoTorqCur;
  405. SLONG slTmpSmoothCur;
  406. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  407. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  408. SWORD swCurSwitch = 0;
  409. SWORD swTmpVoltPu,swTmpVoltPu2;
  410. SLONG slSpdErr,slTmpVoltLim;
  411. SWORD swSpdKpPu = 500; //Q10
  412. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  413. UWORD uwTmpStopCnt = 0;
  414. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  415. /* Select Torq Growth Rate by Bike Gear */
  416. if (ass_stCalIn.uwGearSt == 1)
  417. {
  418. uwTorqAccStep = 50;
  419. }
  420. else if(ass_stCalIn.uwGearSt == 2)
  421. {
  422. uwTorqAccStep = 100;
  423. }
  424. else if(ass_stCalIn.uwGearSt == 3)
  425. {
  426. uwTorqAccStep = 120;
  427. }
  428. else if(ass_stCalIn.uwGearSt == 4)
  429. {
  430. uwTorqAccStep = 150;
  431. }
  432. else if(ass_stCalIn.uwGearSt == 5)
  433. {
  434. uwTorqAccStep = 150;
  435. }
  436. else
  437. {
  438. //do nothing
  439. }
  440. uwTorqDecStep = 80;
  441. /* Select TorqRef: LPFTorq or MAFTorq */
  442. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  443. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  444. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  445. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  446. {
  447. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  448. }
  449. /* Assist torque Cal using Assist Curve */
  450. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  451. if(ass_stCalIn.uwGearSt == 5)
  452. {
  453. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  454. }
  455. else
  456. {
  457. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  458. }
  459. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  460. {
  461. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  462. }
  463. else
  464. {
  465. //do nothing;
  466. }
  467. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  468. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  469. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  470. {
  471. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  472. }
  473. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  474. {
  475. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  476. }
  477. /* Select Assist Percent of Torq and Candence*/
  478. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  479. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  480. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  481. /* Candance Speed to Motor Speed*/
  482. ass_stCalOut.swCadSpd2MotSpd =
  483. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  484. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  485. /* Back EMF Cal */
  486. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  487. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  488. if (swTmpVoltPu < swTmpVoltPu2)
  489. {
  490. swTmpVoltPu = swTmpVoltPu2;
  491. }
  492. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  493. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  494. /* Assist FSM Control */
  495. switch (Ass_FSM)
  496. {
  497. case Startup:
  498. // ass_stCalCoef.swSmoothGain = Q12_1;
  499. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  500. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  501. {
  502. ass_stCalCoef.swSmoothGain = Q12_1;
  503. }
  504. swSpdKpPu = 2000; //ass_stParaSet.uwStartUpCadNm;
  505. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  506. if(slSpdErr < 0)
  507. {
  508. slSpdErr = 0;
  509. }
  510. // ass_stCalCoef.StartFlag = 1;
  511. /* Open Voltage Limit according SpdErr*/
  512. if(ass_stCalCoef.StartFlag == 0)
  513. {
  514. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  515. if(slTmpVoltLim > scm_swVsDcpLimPu)
  516. {
  517. slTmpVoltLim = scm_swVsDcpLimPu;
  518. }
  519. else if(slTmpVoltLim <= swTmpVoltPu)
  520. {
  521. slTmpVoltLim = swTmpVoltPu;
  522. }
  523. else
  524. {
  525. //do nothing
  526. }
  527. ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  528. if(slSpdErr <= 1000)
  529. {
  530. ass_stCalCoef.StartFlag = 1;
  531. }
  532. }
  533. else if(ass_stCalCoef.StartFlag ==1 )
  534. {
  535. if(ass_stCalOut.swVoltLimitPu < (scm_swVsDcpLimPu - uwVoltAccStep))
  536. {
  537. ass_stCalOut.swVoltLimitPu += (SWORD)uwVoltAccStep;//ass_stCalCoef.uwStartUpGainAddStep;
  538. }
  539. else
  540. {
  541. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  542. }
  543. if(slSpdErr <= 100)
  544. {
  545. ass_pvt_swVoltCnt++;
  546. }
  547. else
  548. {
  549. ass_pvt_swVoltCnt--;
  550. if(ass_pvt_swVoltCnt < 0)
  551. {
  552. ass_pvt_swVoltCnt = 0;
  553. }
  554. }
  555. /* Switch to TorqueAssit FSM */
  556. if(ass_pvt_swVoltCnt > 30)
  557. {
  558. Ass_FSM = TorqueAssit;
  559. ass_stCalCoef.StartFlag=0;
  560. ass_pvt_swVoltCnt=0;
  561. }
  562. }
  563. else
  564. {
  565. //do nothing
  566. }
  567. /* Switch to ReduceCurrent FSM */
  568. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  569. {
  570. /* When CandanceFreq=0 or BikeGear=0*/
  571. ass_stCalCoef.swAss2SpdCNT = 0;
  572. Ass_FSM = ReduceCurrent;
  573. }
  574. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  575. {
  576. ass_stCalCoef.swAss2SpdCNT++;
  577. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  578. if(uwTmpStopCnt < 200)
  579. {
  580. uwTmpStopCnt = 200;
  581. }
  582. else if(uwTmpStopCnt > 500)
  583. {
  584. uwTmpStopCnt = 500;
  585. }
  586. else
  587. {
  588. //do nothing
  589. }
  590. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  591. {
  592. ass_stCalCoef.swAss2SpdCNT = 0;
  593. Ass_FSM = ReduceCurrent;
  594. }
  595. }
  596. else
  597. {
  598. ass_stCalCoef.swAss2SpdCNT = 0;
  599. }
  600. break;
  601. case TorqueAssit:
  602. /* 启动系数 */
  603. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  604. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  605. {
  606. ass_stCalCoef.swSmoothGain = Q12_1;
  607. }
  608. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  609. // if(ass_stCalIn.uwtorquelpf >= ass_stCalCoef.uwSwitch1TorqThreshold)
  610. // {
  611. ass_stCalOut.swVoltLimitPu += (SWORD)uwVoltAccStep; //ass_stCalCoef.uwStartUpGainAddStep;
  612. // }
  613. // else if (ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  614. // {
  615. // ass_stCalOut.swVoltLimitPu -= uwVoltDecStep; //ass_stCalCoef.uwSpeedConstantCommand;
  616. // }
  617. // else
  618. // {
  619. // }
  620. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  621. {
  622. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  623. }
  624. // else if (ass_stCalOut.swVoltLimitPu <= (swTmpVoltPu + ass_stParaSet.uwStartUpCadNm))
  625. // {
  626. // ass_stCalOut.swVoltLimitPu = swTmpVoltPu + ass_stParaSet.uwStartUpCadNm;
  627. // }
  628. /* TorqueRef Select Coef */
  629. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  630. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  631. {
  632. ass_stCalCoef.swTorqFilterGain = Q14_1;
  633. }
  634. /* Switch to ReduceCurrent FSM */
  635. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  636. {
  637. /* When CandanceFreq=0 or BikeGear=0*/
  638. ass_stCalOut.blTorqPIFlg = FALSE;
  639. ass_stCalCoef.swAss2SpdCNT = 0;
  640. Ass_FSM = ReduceCurrent;
  641. }
  642. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  643. {
  644. ass_stCalCoef.swAss2SpdCNT++;
  645. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  646. if(uwTmpStopCnt < 200)
  647. {
  648. uwTmpStopCnt = 200;
  649. }
  650. else if(uwTmpStopCnt > 500)
  651. {
  652. uwTmpStopCnt = 500;
  653. }
  654. else
  655. {
  656. //do nothing
  657. }
  658. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  659. {
  660. ass_stCalCoef.swAss2SpdCNT = 0;
  661. ass_stCalOut.blTorqPIFlg = FALSE;
  662. Ass_FSM = ReduceCurrent;
  663. }
  664. }
  665. else
  666. {
  667. ass_stCalCoef.swAss2SpdCNT = 0;
  668. }
  669. break;
  670. case ReduceCurrent:
  671. /* Switch to StopAssit FSM */
  672. if(ass_stCalCoef.swSmoothGain <= 0)
  673. {
  674. ass_stCalCoef.swSmoothGain = 0;
  675. ass_stCalCoef.swTorqFilterGain = 0;
  676. ass_stCalCoef.swCadanceGain = 0;
  677. Ass_FSM = StopAssit;
  678. }
  679. else
  680. {
  681. /* Reduce Curret Coef to Zero*/
  682. ass_stCalCoef.swSmoothGain -=40;
  683. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  684. }
  685. /* Switch to Startup FSM */
  686. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  687. // {
  688. // Ass_FSM = Startup;
  689. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  690. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  691. // }
  692. break;
  693. case StopAssit:
  694. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  695. /* Switch to Startup FSM */
  696. if ((BikeBrake_blGetstate() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  697. {
  698. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  699. {
  700. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  701. {
  702. ass_stCalCoef.sw2StopCNT = 0;
  703. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  704. ass_pvt_stCurLpf.slY.sw.hi = 0;
  705. Ass_FSM = Startup;
  706. }
  707. }
  708. else
  709. {
  710. if (ass_stCalIn.uwtorquelpf > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  711. {
  712. ass_stCalCoef.sw2StopCNT = 0;
  713. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  714. ass_pvt_stCurLpf.slY.sw.hi = 0;
  715. Ass_FSM = Startup;
  716. }
  717. }
  718. }
  719. /* Assit Exit */
  720. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  721. {
  722. ass_stCalCoef.sw2StopCNT++;
  723. }
  724. else
  725. {
  726. if (ass_stCalCoef.sw2StopCNT >= 1)
  727. {
  728. ass_stCalCoef.sw2StopCNT--;
  729. }
  730. }
  731. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE))// 3s
  732. {
  733. ass_stCalCoef.sw2StopCNT = 0;
  734. ass_stCalCoef.blAssistflag = FALSE;
  735. }
  736. break;
  737. default:
  738. break;
  739. }
  740. /* Bikespeed Limit */
  741. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  742. {
  743. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  744. }
  745. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  746. {
  747. ass_stCalCoef.swBikeSpeedGain =
  748. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  749. uwTorqAccStep = 10;
  750. uwTorqDecStep = 10;
  751. }
  752. else
  753. {
  754. ass_stCalCoef.swBikeSpeedGain = 0;
  755. uwTorqAccStep = 10;
  756. uwTorqDecStep = 10;
  757. }
  758. /* Assist Current Output in each FSM */
  759. switch (Ass_FSM)
  760. {
  761. case Startup:
  762. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  763. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  764. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  765. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  766. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  767. {
  768. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  769. }
  770. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  771. {
  772. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  773. }
  774. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  775. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  776. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  777. break;
  778. case TorqueAssit:
  779. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  780. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  781. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  782. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  783. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  784. {
  785. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  786. }
  787. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  788. {
  789. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  790. }
  791. #if CURSWITCH
  792. /* Ajust CurrentRef growth and decline rate */
  793. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  794. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  795. {
  796. ass_pvt_uwTorqAccCnt++;
  797. if(ass_pvt_uwTorqAccCnt >= 2)
  798. {
  799. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  800. ass_pvt_uwTorqAccCnt = 0;
  801. }
  802. }
  803. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  804. {
  805. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  806. {
  807. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  808. }
  809. // ass_pvt_uwTorqDecCnt++;
  810. // if(ass_pvt_uwTorqDecCnt >= 10)
  811. // {
  812. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  813. // ass_pvt_uwTorqDecCnt = 0;
  814. // }
  815. }
  816. else
  817. {
  818. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  819. }
  820. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  821. /* Torq Clzloop Test */
  822. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  823. // {
  824. // if(!ass_stCalOut.blTorqPIFlg)
  825. // {
  826. // /* Initial value */
  827. // ass_stTorqPIOut.slIRefPu = 0;
  828. // swCurSwitch = abs(ass_stCalOut.swTorRefTarget); //abs(ass_stCalOut.swAssitCurRef);
  829. // ass_stCalOut.blTorqPIFlg = TRUE;
  830. // }
  831. //
  832. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  833. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  834. // ass_stTorqPIIn.swImaxPu = 0;
  835. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  836. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  837. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  838. // }
  839. // else
  840. // {
  841. // ass_stCalOut.blTorqPIFlg = FALSE;
  842. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  843. // }
  844. #else
  845. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  846. #endif
  847. break;
  848. case ReduceCurrent:
  849. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  850. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  851. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  852. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  853. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  854. {
  855. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  856. }
  857. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  858. {
  859. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  860. }
  861. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  862. break;
  863. case StopAssit:
  864. ass_stCalOut.swTorAssistCurrentTemp = 0;
  865. ass_stCalOut.swTorRefEnd = 0;
  866. break;
  867. default:
  868. break;
  869. }
  870. /* Assist Iqref Output */
  871. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  872. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  873. /* Bikespeed Limit Coef*/
  874. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  875. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  876. }
  877. /**
  878. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  879. *
  880. * @param coef polynomial coefficient a, b, c, d
  881. * @param Value polynomial input value X
  882. * @param Qnum polynomial input Q type
  883. * @return UWORD polynomial output Y
  884. */
  885. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  886. {
  887. /* Limit the Output Current according to Bike Gear */
  888. UWORD uwIqLimitTemp1;
  889. if(gear > 5)
  890. {
  891. gear = 5;
  892. }
  893. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  894. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  895. }
  896. /**
  897. * @brief
  898. *
  899. * @param
  900. * @return
  901. */
  902. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  903. {
  904. /* Limit the Output Current according to Bike SOC */
  905. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  906. {
  907. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  908. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - ((ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  909. }
  910. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  911. {
  912. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  913. }
  914. else
  915. {
  916. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  917. }
  918. }
  919. /**
  920. * @brief Assist function
  921. *
  922. * @param coef polynomial coefficient a, b, c, d
  923. * @param Value polynomial input value X
  924. * @param Qnum polynomial input Q type
  925. * @return UWORD polynomial output Y
  926. */
  927. void ass_voAssist(void)
  928. {
  929. /* Start Assist Jduge */
  930. if (((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) || ass_stCalIn.uwtorquePer > 3000) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  931. {
  932. ass_stCalCoef.blAssistflag = TRUE;
  933. }
  934. if (ass_stCalCoef.blAssistflag == TRUE)
  935. {
  936. /* Calculate Iqref Limit */
  937. UWORD uwIqLimitTemp;
  938. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  939. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  940. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  941. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  942. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  943. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  944. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  945. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  946. /* Calculate Assist Current, Iqref*/
  947. AssitCuvApplPerVolt();
  948. /* Iqref Limit */
  949. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  950. {
  951. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  952. }
  953. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  954. {
  955. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  956. }
  957. else
  958. {
  959. //do nothing
  960. }
  961. }
  962. else
  963. {
  964. ass_stCalOut.swAssitCurRef = 0;
  965. }
  966. }
  967. /**
  968. * @brief
  969. *
  970. * @param
  971. * @return
  972. */
  973. void ass_voMoveAverageFilter(MAF_IN *in)
  974. {
  975. in->slSum -= in->swBuffer[in->uwIndex];
  976. in->swBuffer[in->uwIndex] = in->swValue;
  977. in->slSum += (SLONG)in->swValue;
  978. if (!in->blSecFlag)
  979. {
  980. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  981. }
  982. else
  983. {
  984. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  985. }
  986. in->uwIndex++;
  987. if (in->uwIndex >= in->uwLength)
  988. {
  989. in->blSecFlag = TRUE;
  990. in->uwIndex = 0;
  991. }
  992. }
  993. void ass_voMoveAverageFilterClear(MAF_IN *in)
  994. {
  995. UWORD i;
  996. in->uwIndex = 0;
  997. in->slSum = 0;
  998. in->blSecFlag = FALSE;
  999. for (i = 0; i < 64; i++)
  1000. {
  1001. in->swBuffer[i] = 0;
  1002. }
  1003. }