adc.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "Temp.h"
  28. #include "api.h"
  29. #include "sys_ctrl.h"
  30. #include "ntc_sensor.h"
  31. /************************************************************************
  32. Constant Table:
  33. *************************************************************************/
  34. /************************************************************************
  35. Exported Functions:
  36. *************************************************************************/
  37. /***************************************************************
  38. Function: adc_voCalibration;
  39. Description: Get phase A and B current zero point, other A/D sample value
  40. Call by: main() before InitADC;
  41. Input Variables: N/A
  42. Output/Return Variables: ADCTESTOUT
  43. Subroutine Call: N/A
  44. Reference: N/A
  45. ****************************************************************/
  46. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  47. {
  48. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  49. {
  50. if (!sysctrl_stPwmState.blChargeOvrFlg)
  51. {
  52. sysctrl_voCharge();
  53. }
  54. else
  55. {
  56. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  57. {
  58. ULONG samplingTick[2];
  59. samplingTick[0] = HW_INIT_HHHPWM_PERIOD;
  60. samplingTick[1] = 129;
  61. iPwm_SyncMultiSamplingCountUp(0, &samplingTick[0], 2);
  62. pwm_stGenOut.blSampleCalibFlag = TRUE;
  63. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  64. {
  65. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH];
  66. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  67. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  68. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  69. out1->uwADCCalibCt++;
  70. }
  71. else
  72. {
  73. sysctrl_voPwmInit(); // mos up charge and adc calib over; pwm off
  74. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  75. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  76. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  77. out1->ulIaRegSum = 0;
  78. out1->ulIbRegSum = 0;
  79. out1->ulIcRegSum = 0;
  80. pwm_stGenOut.blSampleCalibFlag = FALSE;
  81. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> ADC_CALIB_INDEX);
  82. out1->ulIdcRegSum = 0;
  83. out1->uwADCCalibCt = 0;
  84. out1->blADCCalibFlg = TRUE;
  85. out2->uwADCCalibCt = 0;
  86. out2->blADCCalibFlg = TRUE;
  87. }
  88. }
  89. // else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  90. // {
  91. // if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  92. // {
  93. // out1->ulIdcRegSum += adc_uwADDMAPhase1 + adc_uwADDMAPhase2;
  94. // out1->uwADCCalibCt++;
  95. // }
  96. // else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  97. // {
  98. // out2->uwADCCalibCt++;
  99. // }
  100. // else
  101. // {
  102. // sysctrl_voPwmInit();
  103. // cof->uwIdcOffset = out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1);
  104. // out1->ulIdcRegSum = 0;
  105. // out1->uwADCCalibCt = 0;
  106. // out1->blADCCalibFlg = TRUE;
  107. // out2->uwADCCalibCt = 0;
  108. // out2->blADCCalibFlg = TRUE;
  109. // }
  110. // }
  111. // else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  112. // {
  113. // if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  114. // {
  115. // out1->ulIaRegSum += adc_uwRdsonUReg;
  116. // out1->ulIbRegSum += adc_uwRdsonVReg;
  117. // out1->ulIcRegSum += adc_uwRdsonWReg;
  118. // out1->uwADCCalibCt++;
  119. // }
  120. // else
  121. // {
  122. // sysctrl_voPwmInit();
  123. // // cof->uwIaOffset = 2048 ;
  124. // // cof->uwIbOffset = 2048;
  125. // // cof->uwIcOffset = 2048;
  126. // cof->uwIaOffset = out1->ulIaRegSum >> (ADC_CALIB_INDEX);
  127. // cof->uwIbOffset = out1->ulIbRegSum >> (ADC_CALIB_INDEX);
  128. // cof->uwIcOffset = out1->ulIcRegSum >> (ADC_CALIB_INDEX);
  129. //
  130. // out1->ulIaRegSum = 0;
  131. // out1->ulIbRegSum = 0;
  132. // out1->ulIcRegSum = 0;
  133. // out1->uwADCCalibCt = 0;
  134. // out1->blADCCalibFlg = TRUE;
  135. // out2->uwADCCalibCt = 0;
  136. // out2->blADCCalibFlg = TRUE;
  137. // }
  138. // }
  139. else
  140. {
  141. //do nothing
  142. }
  143. }
  144. }
  145. }
  146. /***************************************************************
  147. Function: adc_voSample;
  148. Description: Get three-phase current value after zero point and gain process
  149. Call by: functions in TBC;
  150. Input Variables: ADCIABFIXCOF
  151. Output/Return Variables: ADCTESTOUT
  152. Subroutine Call:
  153. Reference: N/A
  154. ****************************************************************/
  155. void adc_voSampleDown(const ADC_COF *cof, ADC_DOWN_OUT *out)
  156. {
  157. UWORD uwIpeakPu;
  158. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  159. {
  160. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  161. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  162. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  163. out->slSampIaPu = -(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  164. out->slSampIbPu = -(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  165. out->slSampIcPu = -(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  166. out->swIaPu = (SWORD)((out->slSampIaPu * (SLONG)cof->uwCalibcoef) >> 10);
  167. out->swIbPu = (SWORD)((out->slSampIbPu * (SLONG)cof->uwCalibcoef) >> 10);
  168. out->swIcPu = (SWORD)((out->slSampIcPu * (SLONG)cof->uwCalibcoef) >> 10);
  169. }
  170. /*else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  171. {
  172. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  173. // // Wait Injected ADC over
  174. // while(ADC_GetFlagStatus(ADC1,ADC_IT_JEOS) == RESET)
  175. // {}
  176. // ADC_ClearFlag(ADC1,ADC_IT_JEOS);
  177. // Register value
  178. out->uwFirstCurREG = adc_uwADDMAPhase1; // Q12
  179. out->uwSecondCurREG = adc_uwADDMAPhase2; // Q12
  180. tmp_swIphase1 = (SWORD)out->uwFirstCurREG - cof->uwIdcOffset;
  181. tmp_swIphase1 = ((SLONG)tmp_swIphase1 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  182. tmp_swIphase2 = (SWORD)cof->uwIdcOffset - out->uwSecondCurREG;
  183. tmp_swIphase2 = ((SLONG)tmp_swIphase2 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  184. tmp_swIphase3 = (SWORD)out->uwSecondCurREG - out->uwFirstCurREG;
  185. tmp_swIphase3 = ((SLONG)tmp_swIphase3 * cof->uwCurIdcReg2Pu) >> 10; // Q14=Q24-Q10
  186. out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  187. switch (pwm_stGenOut.uwNewSectorNum)
  188. {
  189. case 1:
  190. out->swIbPu = tmp_swIphase1; // v
  191. out->swIcPu = tmp_swIphase2; //-w
  192. out->swIaPu = tmp_swIphase3; // u
  193. break;
  194. case 2:
  195. out->swIaPu = tmp_swIphase1; // u
  196. out->swIbPu = tmp_swIphase2; //-v
  197. out->swIcPu = tmp_swIphase3;
  198. break;
  199. case 3:
  200. out->swIaPu = tmp_swIphase1; // u
  201. out->swIcPu = tmp_swIphase2; //-w
  202. out->swIbPu = tmp_swIphase3;
  203. break;
  204. case 4:
  205. out->swIcPu = tmp_swIphase1; // w
  206. out->swIaPu = tmp_swIphase2; //-u
  207. out->swIbPu = tmp_swIphase3;
  208. break;
  209. case 5:
  210. out->swIbPu = tmp_swIphase1; // v
  211. out->swIaPu = tmp_swIphase2; //-u
  212. out->swIcPu = tmp_swIphase3;
  213. break;
  214. case 6:
  215. out->swIcPu = tmp_swIphase1; // w
  216. out->swIbPu = tmp_swIphase2; //-v
  217. out->swIaPu = tmp_swIphase3;
  218. break;
  219. default:
  220. out->swIaPu = 0;
  221. out->swIbPu = 0;
  222. out->swIcPu = 0;
  223. break;
  224. }
  225. }
  226. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  227. {
  228. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  229. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  230. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  231. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  232. tmp_swIphase1 = -(((SWORD)out->uwIaReg - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  233. tmp_swIphase2 = -(((SWORD)out->uwIbReg - cof->uwIbOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  234. tmp_swIphase3 = -(((SWORD)out->uwIcReg - cof->uwIcOffset) * cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  235. switch (pwm_stGenOut.uwSampleArea)
  236. {
  237. case IgnoreNone:
  238. out->swIaPu = tmp_swIphase1;
  239. out->swIbPu = tmp_swIphase2;
  240. out->swIcPu = tmp_swIphase3;
  241. break;
  242. case IgnoreA:
  243. out->swIaPu = -tmp_swIphase2 - tmp_swIphase3;
  244. out->swIbPu = tmp_swIphase2;
  245. out->swIcPu = tmp_swIphase3;
  246. break;
  247. case IgnoreB:
  248. out->swIaPu = tmp_swIphase1;
  249. out->swIbPu = -tmp_swIphase1 - tmp_swIphase3;
  250. out->swIcPu = tmp_swIphase3;
  251. break;
  252. case IgnoreC:
  253. out->swIaPu = tmp_swIphase1;
  254. out->swIbPu = tmp_swIphase2;
  255. out->swIcPu = tmp_swIphase3;
  256. break;
  257. case IgnoreAB:
  258. out->swIaPu = -tmp_swIphase3 >> 1;
  259. out->swIbPu = -tmp_swIphase3 >> 1;
  260. out->swIcPu = tmp_swIphase3;
  261. break;
  262. case IgnoreBC:
  263. out->swIaPu = tmp_swIphase1;
  264. out->swIbPu = -tmp_swIphase1 >> 1;
  265. out->swIcPu = -tmp_swIphase1 >> 1;
  266. break;
  267. case IgnoreAC:
  268. out->swIaPu = -tmp_swIphase2 >> 1;
  269. out->swIbPu = tmp_swIphase2;
  270. out->swIcPu = -tmp_swIphase2 >> 1;
  271. break;
  272. default:
  273. break;
  274. }
  275. }*/
  276. else
  277. {
  278. //do nothing
  279. }
  280. /* Current absolute value & max value */
  281. if ((out->swIaPu) >= 0)
  282. {
  283. out->uwIaAbsPu = (UWORD)out->swIaPu;
  284. }
  285. else
  286. {
  287. out->uwIaAbsPu = (UWORD)(-(out->swIaPu));
  288. }
  289. if ((out->swIbPu) >= 0)
  290. {
  291. out->uwIbAbsPu = (UWORD)out->swIbPu;
  292. }
  293. else
  294. {
  295. out->uwIbAbsPu = (UWORD)(-(out->swIbPu));
  296. }
  297. if ((out->swIcPu) >= 0)
  298. {
  299. out->uwIcAbsPu = (UWORD)out->swIcPu;
  300. }
  301. else
  302. {
  303. out->uwIcAbsPu = (UWORD)(-(out->swIcPu));
  304. }
  305. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  306. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  307. out->uwIpeakPu = uwIpeakPu;
  308. }
  309. void adc_voSampleUp_High(const ADC_COF *cof, ADC_UP_OUT *out)
  310. {
  311. /* Register value */
  312. out->uwVdcReg = iAdc_GetResultPointer(0)[HW_ADC_UDC_CH];
  313. out->uwVdcPu = (UWORD)((ULONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10); // Q14=Q24-Q10
  314. out->uwVdcPu = (SLONG)((out->uwVdcReg * cof->uwVdcReg2Pu >> 10) - 410); // Q14=Q24-Q10,电路上DCDC的EN漏电流导致测量偏高1.2V
  315. /* Vdc LPF */
  316. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  317. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  318. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  319. {
  320. switch (pwm_stGenOut.uwSingelRSampleArea)
  321. {
  322. case 0:
  323. out->swCalibIaPu = 0;
  324. out->swCalibIbPu = 0;
  325. out->swCalibIcPu = 0;
  326. break;
  327. case SampleA:
  328. out->swCalibIaPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  329. break;
  330. case SampleB:
  331. out->swCalibIbPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  332. break;
  333. case SampleC:
  334. out->swCalibIcPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  335. break;
  336. default:
  337. break;
  338. }
  339. }
  340. ////////////////// PCB TEMP//////////////////////////////////////////////////////
  341. // if(out->PCBTempReg != 0)
  342. // {
  343. // out->PCBTempR = (UWORD)((ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER); // Q14=Q24-Q10;
  344. // }
  345. // PcbTempCal((SWORD)out->PCBTempR);
  346. // out->PCBTemp = tmp_PcbTemp;
  347. }
  348. void adc_voSampleUp_Low(const ADC_COF *cof, ADC_UP_OUT *out)
  349. {
  350. out->uwRU6VReg = iAdc_GetResultPointer(0)[HW_ADC_U6V_CH];
  351. out->uwRU6VPu = (UWORD)((ULONG)out->uwRU6VReg * cof->uwU6VReg2Pu >> 10); // Q14=Q24-Q10;
  352. out->uwU5VReg = iAdc_GetResultPointer(0)[HW_ADC_U5V_CH];
  353. out->uwU5VPu = (UWORD)((ULONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10); // Q14=Q24-Q10;
  354. out->PCBTempReg = iAdc_GetResultPointer(0)[HW_ADC_PCBTEMP_CH];
  355. out->PCBTemp = GetPCBTemp(out->PCBTempReg);
  356. out->uwFU6VReg = iAdc_GetResultPointer(0)[HW_ADC_MOTTEMP_CH];
  357. out->uwFU6VPu = (UWORD)((ULONG)out->uwFU6VReg * cof->uwU6VReg2Pu >> 10); // Q14=Q24-Q10;
  358. out->uwU12VReg = iAdc_GetResultPointer(0)[HW_ADC_U12V_CH];
  359. out->uwU12VPu = (UWORD)((ULONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10); // Q14=Q24-Q10;
  360. out->uwThrottleReg = iAdc_GetResultPointer(0)[HW_ADC_THRO_CH];
  361. }
  362. static SWORD adc_pvt_swSingleReg = 0;
  363. static SLONG adc_pvt_slRdsonReg = 0;
  364. static LPF_OUT adc_pvt_stRdsonCoefLpf = {.slY.sw.hi = 1024, .slY.sw.low = 0};
  365. static BOOL adc_pvt_blCalGainFlg = FALSE;
  366. static ULONG adc_pvt_ulGainTemp1 = 0;
  367. static ULONG adc_pvt_ulIaAbsPu, adc_pvt_ulIbAbsPu, adc_pvt_ulIcAbsPu, adc_pvt_ulIPeakPu;
  368. void adc_voSRCalibration(ADC_COF *cof, const ADC_UP_OUT *up_out, ADC_DOWN_OUT *down_out)
  369. {
  370. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  371. {
  372. switch (pwm_stGenOut.uwSingelRSampleArea)
  373. {
  374. case 0:
  375. break;
  376. case SampleA:
  377. if(adc_pvt_swSingleReg > up_out->swCalibIaPu)
  378. {
  379. adc_pvt_swSingleReg = up_out->swCalibIaPu;
  380. }
  381. if(adc_pvt_slRdsonReg > down_out->slSampIaPu)
  382. {
  383. adc_pvt_slRdsonReg = down_out->slSampIaPu;
  384. }
  385. break;
  386. case SampleB:
  387. if(adc_pvt_swSingleReg > up_out->swCalibIbPu)
  388. {
  389. adc_pvt_swSingleReg = up_out->swCalibIbPu;
  390. }
  391. if(adc_pvt_slRdsonReg > down_out->slSampIbPu)
  392. {
  393. adc_pvt_slRdsonReg = down_out->slSampIbPu;
  394. }
  395. break;
  396. case SampleC:
  397. if(adc_pvt_swSingleReg > up_out->swCalibIcPu)
  398. {
  399. adc_pvt_swSingleReg = up_out->swCalibIcPu;
  400. }
  401. if(adc_pvt_slRdsonReg > down_out->slSampIcPu)
  402. {
  403. adc_pvt_slRdsonReg = down_out->slSampIcPu;
  404. }
  405. break;
  406. default:
  407. break;
  408. }
  409. adc_pvt_blCalGainFlg = TRUE;
  410. }
  411. else
  412. {
  413. ULONG ulOverflowCurPu = (ULONG)(4095 - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10;
  414. if(scm_uwSpdFbkLpfAbsPu < 2500)
  415. {
  416. adc_pvt_ulIaAbsPu = ABS(down_out->slSampIaPu);
  417. adc_pvt_ulIbAbsPu = ABS(down_out->slSampIbPu);
  418. adc_pvt_ulIcAbsPu = ABS(down_out->slSampIcPu);
  419. adc_pvt_ulIPeakPu = adc_pvt_ulIaAbsPu > adc_pvt_ulIbAbsPu ? adc_pvt_ulIaAbsPu : adc_pvt_ulIbAbsPu;
  420. down_out->ulISamplePeakPu = adc_pvt_ulIcAbsPu > adc_pvt_ulIPeakPu ? adc_pvt_ulIcAbsPu : adc_pvt_ulIPeakPu;
  421. if(down_out->ulISamplePeakPu > 32767)
  422. {
  423. adc_pvt_ulGainTemp1 = 780; ///< Rdson电流采样溢出SWORD时校准系数需小于1024
  424. adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1; ///< 系数立刻变化,不经过滤波,防止down_out->swIaPu溢出
  425. }
  426. // else if(down_out->ulISamplePeakPu > 25800) ///< 25800 = 32767 / (1300 / 1024)
  427. // {
  428. // adc_pvt_ulGainTemp1 = 1024;
  429. // adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1;
  430. // }
  431. else
  432. {
  433. adc_pvt_ulGainTemp1 = 1024; ///< 允许其他数值,但大于1024需注意溢出SWORD
  434. }
  435. cof->blCalibCalFlag = FALSE;
  436. adc_pvt_blCalGainFlg = FALSE;
  437. }
  438. else
  439. {
  440. if(adc_pvt_blCalGainFlg)
  441. {
  442. if(adc_pvt_slRdsonReg != 0 && ABS(adc_pvt_slRdsonReg) < ulOverflowCurPu)
  443. {
  444. adc_pvt_ulGainTemp1 = (SLONG)((SLONG)adc_pvt_swSingleReg << 10) / (SLONG)adc_pvt_slRdsonReg;
  445. }
  446. else if(ABS(adc_pvt_slRdsonReg) >= ulOverflowCurPu)
  447. {
  448. adc_pvt_ulGainTemp1 = 780; ///< Rdson电流采样削顶时不再校准电流,强制输出为119A防止溢出,尽快报出过流故障
  449. adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1;
  450. }
  451. else
  452. {
  453. // do nothing
  454. }
  455. if(adc_pvt_ulGainTemp1 > cof->uwCalibcoefMax)
  456. {
  457. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMax;
  458. }
  459. else if(adc_pvt_ulGainTemp1 < cof->uwCalibcoefMin)
  460. {
  461. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMin;
  462. }
  463. else
  464. {
  465. //do nothing
  466. }
  467. cof->blCalibCalFlag = TRUE;
  468. adc_pvt_blCalGainFlg = FALSE;
  469. }
  470. else
  471. {
  472. adc_pvt_swSingleReg = 0;
  473. adc_pvt_slRdsonReg = 0;
  474. }
  475. }
  476. mth_voLPFilter((SWORD)adc_pvt_ulGainTemp1, &adc_pvt_stRdsonCoefLpf);
  477. cof->uwCalibcoef = adc_pvt_stRdsonCoefLpf.slY.sw.hi;
  478. }
  479. }
  480. /***************************************************************
  481. Function: adc_voSampleCoef;
  482. Description: Get other A/D sample value
  483. Call by: functions in Mainloop;
  484. Input Variables: ADCIABFIXCOF
  485. Output/Return Variables: ADCTESTOUT
  486. Subroutine Call:
  487. Reference: N/A
  488. ****************************************************************/
  489. void adc_voSampleCoef(ADC_COF *cof)
  490. {
  491. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  492. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  493. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  494. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  495. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  496. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  497. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  498. cof->uwCalibcoef = 1024;
  499. cof->uwCalibcoefMax = 2048;
  500. cof->uwCalibcoefMin = 200;
  501. cof->uwCalibCoefK = 160; // q10
  502. mth_voLPFilterCoef(1000000 / 30, FTBC_HZ, &adc_pvt_stRdsonCoefLpf.uwKx); //100Hz
  503. }
  504. /***************************************************************
  505. Function: adc_voSampleInit;
  506. Description: ADC sample initialization
  507. Call by: mn_voSoftwareInit;
  508. Input Variables: N/A
  509. Output/Return Variables: N/A
  510. Subroutine Call:
  511. Reference: N/A
  512. ****************************************************************/
  513. void adc_voSampleInit(void)
  514. {
  515. adc_stDownOut.swIaPu = 0;
  516. adc_stDownOut.swIbPu = 0;
  517. adc_stDownOut.swIcPu = 0;
  518. adc_stDownOut.uwIaAbsPu = 0;
  519. adc_stDownOut.uwIbAbsPu = 0;
  520. adc_stDownOut.uwIcAbsPu = 0;
  521. adc_stDownOut.uwIpeakPu = 0;
  522. adc_stDownOut.uwIaReg = 0;
  523. adc_stDownOut.uwIbReg = 0;
  524. adc_stDownOut.uwIcReg = 0;
  525. adc_stDownOut.uwFirstCurREG = 0;
  526. adc_stDownOut.uwSecondCurREG = 0;
  527. adc_stDownOut.uwADCSector = 0;
  528. adc_stDownOut.uwIaAvgPu = 0;
  529. adc_stDownOut.uwIbAvgPu = 0;
  530. adc_stDownOut.uwIcAvgPu = 0;
  531. adc_stDownOut.ulUaRegSum = 0;
  532. adc_stDownOut.ulUbRegSum = 0;
  533. adc_stDownOut.ulUcRegSum = 0;
  534. adc_stDownOut.ulIdcRegSum = 0;
  535. adc_stDownOut.ulIaRegSum = 0;
  536. adc_stDownOut.ulIbRegSum = 0;
  537. adc_stDownOut.ulIcRegSum = 0;
  538. adc_stDownOut.uwADCCalibCt = 0;
  539. adc_stDownOut.blADCCalibFlg = FALSE;
  540. adc_stDownOut.ulISamplePeakPu = 0;
  541. adc_stUpOut.uwVdcPu = 0;
  542. adc_stUpOut.uwVdcLpfPu = 0;
  543. adc_stUpOut.uwRU6VPu = 0;
  544. adc_stUpOut.uwU5VPu = 0;
  545. adc_stUpOut.uwU12VPu = 0;
  546. adc_stUpOut.uwTrottlePu = 0;
  547. adc_stUpOut.PCBTemp = 0;
  548. adc_stUpOut.uwFU6VPu = 0;
  549. adc_stUpOut.MotorTemp = 0;
  550. adc_stUpOut.uwVdcReg = 0;
  551. adc_stUpOut.uwRU6VReg = 0;
  552. adc_stUpOut.uwU5VReg = 0;
  553. adc_stUpOut.uwU12VReg = 0;
  554. adc_stUpOut.uwThrottleReg = 0;
  555. adc_stUpOut.PCBTempReg = 0;
  556. adc_stUpOut.uwFU6VReg = 0;
  557. adc_stUpOut.swCalibIaPu = 0;
  558. adc_stUpOut.swCalibIbPu = 0;
  559. adc_stUpOut.swCalibIcPu = 0;
  560. adc_stUpOut.uwADCCalibCt = 0;
  561. adc_stUpOut.blADCCalibFlg = FALSE;
  562. adc_stUpOut.swIPMTempCe = 0;
  563. adc_pvt_swSingleReg = 0;
  564. adc_pvt_slRdsonReg = 0;
  565. adc_pvt_stRdsonCoefLpf.slY.sw.hi = 1024;
  566. adc_pvt_stRdsonCoefLpf.slY.sw.low = 0;
  567. adc_pvt_blCalGainFlg = FALSE;
  568. adc_pvt_ulGainTemp1 = 0;
  569. adc_pvt_ulIaAbsPu = 0;
  570. adc_pvt_ulIbAbsPu = 0;
  571. adc_pvt_ulIcAbsPu = 0;
  572. adc_pvt_ulIPeakPu = 0;
  573. }
  574. /*************************************************************************
  575. Local Functions (N/A)
  576. *************************************************************************/
  577. /************************************************************************
  578. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  579. All rights reserved.
  580. *************************************************************************/
  581. #ifdef _ADCDRV_C_
  582. #undef _ADCDRV_C_
  583. #endif
  584. /*************************************************************************
  585. End of this File (EOF)!
  586. Do not put anything after this part!
  587. *************************************************************************/