AssistCurve.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "FSM_1st.h"
  21. #include "Cadence.h"
  22. #include "torquesensor.h"
  23. #include "flash_master.h"
  24. /******************************
  25. *
  26. * Parameter
  27. *
  28. ******************************/
  29. ASS_FSM_STATUS Ass_FSM;
  30. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  31. ASS_PER_COEF ass_stCalCoef;
  32. ASS_PER_OUT ass_stCalOut;
  33. ASS_PARA_CONFIGURE ass_stParaCong;
  34. ASS_PARA_SET ass_stParaSet;
  35. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  36. ASS_CURLIM_OUT ass_stCurLimOut;
  37. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  38. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  39. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  40. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  41. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  42. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  43. ASS_TORQ_PI_IN ass_stTorqPIIn;
  44. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  45. SWORD ass_swTorqMafBuf[64];
  46. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  47. SWORD ass_swUqLimMafBuf[64];
  48. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  49. TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  50. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  51. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  52. /******************************
  53. *
  54. * Function
  55. *
  56. ******************************/
  57. /**
  58. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  59. *
  60. * @param coef polynomial coefficient a, b, c, d
  61. * @param Value polynomial input value X
  62. * @param Qnum polynomial input Q type
  63. * @return UWORD polynomial output Y
  64. */
  65. static SLONG ass_slPolynomial(POLY_COEF *coef, SWORD *value, UWORD Qnum)
  66. {
  67. SLONG out;
  68. SLONG temp_a, temp_b, temp_c;
  69. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  70. temp_a = (((((SQWORD)coef->a * *value >> 12) * *value) >> Qnum) * *value) >> Qnum; // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  71. temp_b = (((SQWORD)coef->b * *value >> 12) * *value) >> Qnum; // Qx+Q12-Q12+Qx-Qx=Qx
  72. temp_c = (SQWORD)coef->c * *value >> 12; // Qx+Q12-Q12=Qx
  73. out = temp_a + temp_b + temp_c + coef->d;
  74. out = (SLONG)out;
  75. return out;
  76. }
  77. /**
  78. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  79. *
  80. * @param coef original point coefficient z, h, k
  81. * @return POLY_COEF a, b, c, d
  82. */
  83. static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  84. {
  85. POLY_COEF out;
  86. /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  87. out.a = (SQWORD)0; // Q12
  88. out.b = (SQWORD)coef->z; // Q12
  89. out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  90. out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  91. return out;
  92. }
  93. /**
  94. * @brief Torque to Current when Id = 0;
  95. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  96. * @param coef polynomial coefficient a, b, c, d
  97. * @param Value polynomial input value X
  98. * @param Qnum polynomial input Q type
  99. * @return UWORD polynomial output Y
  100. */
  101. static SWORD ass_swTorq2CurPu(SWORD Tor)
  102. {
  103. SWORD CurrentPu;
  104. SWORD MotorTorqueNotPu;
  105. MotorTorqueNotPu = ((SLONG)Tor * TORQUEBASE / ass_stParaCong.uwMechRationMotor) >> 7; // Q14-Q7 = Q7 0.1Nm Not Pu
  106. CurrentPu = ((SLONG)MotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE; // Q7+Q7 = Q14; 0.1Nm/0.01A
  107. return CurrentPu;
  108. }
  109. /**
  110. * @brief
  111. *
  112. * @param
  113. * @return
  114. */
  115. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  116. {
  117. UWORD TempAssit;
  118. UWORD TempGear, gear;
  119. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  120. // {
  121. // TempAssit = ass_stParaCong.uwAssistSelect1;
  122. // }
  123. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  124. // {
  125. // TempAssit = ass_stParaCong.uwAssistSelect2;
  126. // }
  127. // else
  128. // {
  129. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  130. // }
  131. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  132. {
  133. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  134. }
  135. else if (ass_stParaCong.uwStartMode == 2)
  136. {
  137. TempAssit = ass_stParaCong.uwAssistSelect1;
  138. }
  139. else if (ass_stParaCong.uwStartMode == 3)
  140. {
  141. TempAssit = ass_stParaCong.uwAssistSelect2;
  142. }
  143. else
  144. {
  145. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  146. }
  147. for (gear = 0; gear < 5; gear++)
  148. {
  149. TempGear = gear * 3 + ((TempAssit >> (gear << 1)) & 0x0003);
  150. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  151. }
  152. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  153. }
  154. /**
  155. * @brief Para from EE Init
  156. *
  157. * @param void
  158. * @return void
  159. */
  160. void ass_voAssitEEInit(void)
  161. {
  162. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  163. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  164. ass_stParaCong.uwMechRationMotor = 35; // Q0
  165. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  166. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  167. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  168. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  169. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  170. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  171. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_VOLTAGE;
  172. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  173. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  174. ass_stParaCong.uwAutoPowerOffTime = BIKE_AUTO_POWER_OFF_TIME;
  175. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  176. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  177. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  178. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  179. ass_stParaSet.uwStartUpGainStep = 25;
  180. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  181. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  182. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  183. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  184. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  185. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  186. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  187. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  188. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  189. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  190. ass_stParaSet.uwAsssistSelectNum = 1;
  191. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  192. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  193. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  194. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  195. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  196. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  197. }
  198. /**
  199. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  200. *
  201. * @param coef polynomial coefficient a, b, c, d
  202. * @param Value polynomial input value X
  203. * @param Qnum polynomial input Q type
  204. * @return UWORD polynomial output Y
  205. */
  206. LPF_OUT ass_pvt_stCurLpf;
  207. void ass_voAssitCoef(void)
  208. {
  209. /*状态机初始化*/
  210. Ass_FSM = StopAssit;
  211. /*电机限制初始化*/
  212. ass_stParaCong.uwCofCurMaxPu = (((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE); // Q14
  213. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  214. ass_stParaCong.uwCofTorMaxPu = (((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  215. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  216. /*速度环参数初始化*/
  217. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  218. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  219. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  220. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  221. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  222. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  223. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  224. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  225. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  226. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  227. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  228. /*电流限幅计算*/
  229. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  230. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  231. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  232. ass_stCurLimCalBMSCoef.swIqLImitK =
  233. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  234. /*助力曲线初始化*/
  235. ass_voAssistModeSelect();
  236. /*助力启动阈值初始化*/
  237. ass_stCalCoef.uwAssThreshold = ((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE; // Q14
  238. ass_stCalCoef.uwAssStopThreshold = ((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE; // Q14;
  239. /*助力系数初始化*/
  240. ass_stCalCoef.StartFlag = 0;
  241. ass_stCalCoef.swSmoothGain = 0; // Q12
  242. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  243. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  244. if (ass_stCalCoef.uwStartUpGainAddStep < 1)
  245. {
  246. ass_stCalCoef.uwStartUpGainAddStep = 1;
  247. }
  248. if (ass_stCalCoef.uwStartUpGainAddStep > 50)
  249. {
  250. ass_stCalCoef.uwStartUpGainAddStep = 50;
  251. }
  252. /*设置启动到正常助力最少踏频数*/
  253. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  254. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  255. {
  256. ass_stCalCoef.uwStartUpTimeCadenceCnt = (CADENCE_NUMBERS_PULSES >> 3);
  257. }
  258. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  259. {
  260. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  261. }
  262. /*设置滑动平均滤波踏频数*/
  263. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  264. ass_stCalCoef.swCadanceGain = 0;
  265. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  266. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  267. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  268. /*初始化计数*/
  269. ass_stCalCoef.uwCadencePeriodCNT = 0;
  270. ass_stCalCoef.swCadanceCNT = 0;
  271. ass_stCalCoef.sw2StopCNT = 0;
  272. ass_stCalCoef.swAss2SpdCNT = 0;
  273. /*配置速度环参数*/
  274. ass_stCalCoef.uwSpeedConstantCommand = (((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  275. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  276. ass_stCalCoef.swSpeedlimtrpm = -100;
  277. ass_stCalCoef.swBikeSpeedGain = 0;
  278. /*设置电流限幅*/
  279. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  280. ass_stCalCoef.swCurrentmax_torAssPu =((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwTorWeight) >> 12; // Q14
  281. ass_stCalCoef.swCurrentmax_cadAssPu = ((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwCadenceWeight )>> 12; // Q14
  282. /*初始化标志*/
  283. ass_stCalCoef.blAssistflag = FALSE;
  284. ass_stCalOut.swTorAssistSum1 = 0;
  285. ass_stCalOut.swTorAssistSum2 = 0;
  286. ass_stCalOut.swTorAss2CurrentTemp = 0;
  287. ass_stCalOut.swCadAss2CurrentTemp = 0;
  288. ass_stCalOut.swTorAssistCurrentTemp = 0;
  289. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  290. ass_stCalOut.swTorAssistCurrent = 0;
  291. ass_stCalOut.swSpeedRef = 0;
  292. ass_stCalOut.swCadSpd2MotSpd = 0;
  293. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  294. ass_stCurLimCoef.uwLimitGain[1] = 400;
  295. ass_stCurLimCoef.uwLimitGain[2] = 682;
  296. ass_stCurLimCoef.uwLimitGain[3] = 910;
  297. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  298. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  299. ass_stCurLimCoef.uwSpdThresHold = 21845;
  300. /*设置车速限幅*/
  301. // ass_stCurLimCoef.uwBikeSpdThresHold1 = ((SQWORD)10000 << 30) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  302. // ((SQWORD)36 * 3216 * ass_stParaCong.uwWheelPerimeter * FBASE); // Q20 3216 = Q10(3.1415926)
  303. // ass_stCurLimCoef.uwBikeSpdThresHold2 =
  304. // ((SQWORD)10000 << 30) * ass_stParaSet.uwAssistLimitBikeSpdStop / ((SQWORD)36 * 3216 * ass_stParaCong.uwWheelPerimeter * FBASE);
  305. ass_stCurLimCoef.uwBikeSpdThresHold1 = ((SQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  306. ((SQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE); // Q20 3216 = Q10(3.1415926)
  307. ass_stCurLimCoef.uwBikeSpdThresHold2 = ((SQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  308. ((SQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE); // Q20 3216 = Q10(3.1415926)
  309. ass_stCurLimCoef.ulBikeSpdDeltInv = ((SQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1); // Q20;
  310. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  311. (((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu; // Q28-q14 = Q14;
  312. /*设置转矩电流标定系数*/
  313. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  314. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  315. ass_Tor2CurCalCoef.swCalCoefINV =
  316. (((SLONG)1 << 7) * 1000 * 1000) /
  317. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  318. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  319. ass_pvt_stCurLpf.slY.sl = 0;
  320. }
  321. /**
  322. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  323. *
  324. * @param coef polynomial coefficient a, b, c, d
  325. * @param Value polynomial input value X
  326. * @param Qnum polynomial input Q type
  327. * @return UWORD polynomial output Y
  328. */
  329. void ass_voAssitTorqPIInit(void)
  330. {
  331. ass_stTorqPIOut.slIRefPu = 0;
  332. ass_stTorqPIOut.swErrZ1Pu = 0;
  333. ass_stTorqPIOut.swIRefPu = 0;
  334. }
  335. void ass_voAssitTorqPI(ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  336. {
  337. SLONG slErrPu, slDeltaErrPu;
  338. SLONG slIpPu, slIiPu;
  339. SLONG slImaxPu, slIminPu;
  340. SQWORD sqIRefPu, sqIpPu;
  341. UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  342. // uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  343. // uwKitPu = ass_stParaSet.uwStartUpCadNm;
  344. slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  345. slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  346. slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  347. if (slErrPu > 32767)
  348. {
  349. slErrPu = 32767;
  350. }
  351. else if (slErrPu < -32768)
  352. {
  353. slErrPu = -32768;
  354. }
  355. else
  356. {
  357. /* Nothing */
  358. }
  359. //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  360. slDeltaErrPu = slErrPu;
  361. if (slDeltaErrPu > 32767)
  362. {
  363. slDeltaErrPu = 32767;
  364. }
  365. else if (slDeltaErrPu < -32768)
  366. {
  367. slDeltaErrPu = -32768;
  368. }
  369. else
  370. {
  371. /* Nothing */
  372. }
  373. slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  374. sqIpPu = (SQWORD)slIpPu << 3;
  375. slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  376. //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  377. sqIRefPu = sqIpPu;
  378. if (sqIRefPu > slImaxPu)
  379. {
  380. out->slIRefPu = slImaxPu;
  381. }
  382. else if (sqIRefPu < slIminPu)
  383. {
  384. out->slIRefPu = slIminPu;
  385. }
  386. else
  387. {
  388. out->slIRefPu = sqIRefPu;
  389. }
  390. out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  391. out->swErrZ1Pu = (SWORD)slErrPu;
  392. }
  393. SWORD ass_pvt_swVoltCnt=0;
  394. UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  395. static void AssitCuvApplPerVolt(void)
  396. {
  397. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  398. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  399. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  400. SWORD swTmpSpdtoTorqCur;
  401. SLONG slTmpSmoothCur;
  402. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  403. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  404. SWORD swCurSwitch = 0;
  405. SWORD swTmpVoltPu,swTmpVoltPu2;
  406. SLONG slSpdErr,slTmpVoltLim;
  407. SWORD swSpdKpPu = 500; //Q10
  408. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  409. UWORD uwTmpStopCnt = 0;
  410. ORIG_COEF stStopOrigCoef = {-100, 0, 0};
  411. POLY_COEF stStopCoef;
  412. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  413. /* Select Torq Growth Rate by Bike Gear */
  414. if (ass_stCalIn.uwGearSt == 1)
  415. {
  416. uwTorqAccStep = 50;
  417. }
  418. else if(ass_stCalIn.uwGearSt == 2)
  419. {
  420. uwTorqAccStep = 100;
  421. }
  422. else if(ass_stCalIn.uwGearSt == 3)
  423. {
  424. uwTorqAccStep = 120;
  425. }
  426. else if(ass_stCalIn.uwGearSt == 4)
  427. {
  428. uwTorqAccStep = 150;
  429. }
  430. else if(ass_stCalIn.uwGearSt == 5)
  431. {
  432. uwTorqAccStep = 150;
  433. }
  434. else
  435. {
  436. }
  437. uwTorqDecStep = 80;
  438. /* Select TorqRef: LPFTorq or MAFTorq */
  439. swTorqCmd1 = ((ULONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  440. ((ULONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  441. swTorqCmd = ((ULONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12; //转矩指令斜坡
  442. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  443. {
  444. swTorqCmd = ass_stParaCong.uwBikeAssTorMaxPu;
  445. }
  446. /* Assist torque Cal using Assist Curve */
  447. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  448. if(ass_stCalIn.uwGearSt == 5)
  449. {
  450. slTeTorAssitLinerPu = (SLONG)(((swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273);
  451. }
  452. else
  453. {
  454. slTeTorAssitLinerPu = (SLONG)(((swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273);
  455. }
  456. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  457. {
  458. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  459. }
  460. else
  461. {
  462. //do nothing;
  463. }
  464. swCadCmd = (((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12)*10; // 踏频指令斜坡
  465. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  466. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  467. {
  468. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  469. }
  470. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  471. {
  472. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  473. }
  474. /* Select Assist Percent of Torq and Candence*/
  475. swTeTorAssitPu1 = (((SLONG)slTeTorAssitTmpPu) * ass_stParaSet.uwTorAssAjstGain) >> 12; // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  476. swTeCadAssitPu1 = (((SLONG)slTeCadAssitTmpPu) * ass_stParaSet.uwCadenceAssAjstGain) >> 12; // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  477. ass_stCalOut.swTorAssistSum1 = (swTeTorAssitPu1 + swTeCadAssitPu1); // Q14
  478. /* Candance Speed to Motor Speed*/
  479. ass_stCalOut.swCadSpd2MotSpd =
  480. ((SLONG)ass_stCalIn.uwcadance * ass_stParaCong.uwMechRationMotor * ass_stParaCong.uwMotorPoles) >> 5; // Q20-Q5= Q15 出力时电机转速计算
  481. ass_stCalCoef.uwCadencePeriodCNT = TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE)); //一圈踏频时间计数
  482. /* Back EMF Cal */
  483. swTmpVoltPu = (SLONG)ass_stCalOut.swCadSpd2MotSpd *(SLONG)cof_uwFluxPu >> 13;//Q15+Q12-Q13=Q14;
  484. swTmpVoltPu2 = (SLONG)ass_stCalIn.uwSpdFbkAbsPu*(SLONG)cof_uwFluxPu >> 13;//Q15+Q12-Q13=Q14;
  485. if (swTmpVoltPu < swTmpVoltPu2)
  486. {
  487. swTmpVoltPu = swTmpVoltPu2;
  488. }
  489. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  490. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  491. /* Assist FSM Control */
  492. switch (Ass_FSM)
  493. {
  494. case Startup:
  495. ass_stCalCoef.swSmoothGain = Q12_1;
  496. swSpdKpPu = 2000; //ass_stParaSet.uwStartUpCadNm;
  497. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  498. if(slSpdErr < 0)
  499. {
  500. slSpdErr = 0;
  501. }
  502. // ass_stCalCoef.StartFlag = 1;
  503. /* Open Voltage Limit according SpdErr*/
  504. if(ass_stCalCoef.StartFlag == 0)
  505. {
  506. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  507. if(slTmpVoltLim > scm_swVsDcpLimPu)
  508. {
  509. slTmpVoltLim = scm_swVsDcpLimPu;
  510. }
  511. else if(slTmpVoltLim <= 0)
  512. {
  513. slTmpVoltLim =0;
  514. }
  515. ass_stCalOut.swVoltLimitPu = slTmpVoltLim;
  516. if(slSpdErr <= 800)
  517. {
  518. ass_stCalCoef.StartFlag=1;
  519. }
  520. }
  521. else if(ass_stCalCoef.StartFlag ==1 )
  522. {
  523. if(ass_stCalOut.swVoltLimitPu < (scm_swVsDcpLimPu - uwVoltAccStep))
  524. {
  525. ass_stCalOut.swVoltLimitPu += uwVoltAccStep;//ass_stCalCoef.uwStartUpGainAddStep;
  526. }
  527. else
  528. {
  529. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  530. }
  531. if(slSpdErr <= 100)
  532. {
  533. ass_pvt_swVoltCnt++;
  534. }
  535. else
  536. {
  537. ass_pvt_swVoltCnt--;
  538. if(ass_pvt_swVoltCnt < 0)
  539. {
  540. ass_pvt_swVoltCnt = 0;
  541. }
  542. }
  543. /* Switch to TorqueAssit FSM */
  544. if(ass_pvt_swVoltCnt > 30)
  545. {
  546. Ass_FSM = TorqueAssit;
  547. //ass_stCalCoef.StartFlag=0;
  548. }
  549. }
  550. /* Switch to ReduceCurrent FSM */
  551. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0))
  552. {
  553. /* When CandanceFreq=0 or BikeGear=0*/
  554. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  555. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  556. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  557. ass_stCalCoef.swAss2SpdCNT = 0;
  558. ass_stCalCoef.sw2StopCNT = 0;
  559. Ass_FSM = ReduceCurrent;
  560. }
  561. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  562. {
  563. /* When InstantTorq < StopTorq and hold half circle */
  564. // if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  565. // {
  566. // ass_stCalCoef.swAss2SpdCNT++;
  567. // }
  568. // if (ass_stCalCoef.swAss2SpdCNT > (ass_stParaCong.uwCadPulsePerCirc >> 1))
  569. // {
  570. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  571. // asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  572. // asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  573. // ass_stCalCoef.swAss2SpdCNT = 0;
  574. // ass_stCalCoef.sw2StopCNT = 0;
  575. // Ass_FSM = ReduceCurrent;
  576. // }
  577. ass_stCalCoef.swAss2SpdCNT++;
  578. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  579. if(uwTmpStopCnt < 300)
  580. {
  581. uwTmpStopCnt = 300;
  582. }
  583. else if(uwTmpStopCnt > 1000)
  584. {
  585. uwTmpStopCnt = 1000;
  586. }
  587. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  588. {
  589. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  590. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  591. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  592. ass_stCalCoef.swAss2SpdCNT = 0;
  593. ass_stCalCoef.sw2StopCNT = 0;
  594. Ass_FSM = ReduceCurrent;
  595. }
  596. }
  597. else
  598. {
  599. ass_stCalCoef.swAss2SpdCNT = 0;
  600. }
  601. break;
  602. case TorqueAssit:
  603. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  604. if(ass_stCalIn.uwtorquelpf >= ass_stCalCoef.uwSwitch1TorqThreshold)
  605. {
  606. ass_stCalOut.swVoltLimitPu += uwVoltAccStep; //ass_stCalCoef.uwStartUpGainAddStep;
  607. }
  608. else if (ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  609. {
  610. ass_stCalOut.swVoltLimitPu -= uwVoltDecStep; //ass_stCalCoef.uwSpeedConstantCommand;
  611. }
  612. else
  613. {}
  614. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  615. {
  616. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  617. }
  618. else if (ass_stCalOut.swVoltLimitPu <= (swTmpVoltPu + ass_stParaSet.uwStartUpCadNm))
  619. {
  620. ass_stCalOut.swVoltLimitPu = swTmpVoltPu + ass_stParaSet.uwStartUpCadNm;
  621. }
  622. /* Torque Clzloop Test */
  623. // if(ass_stCalOut.swVoltLimitPu < (scm_swVsDcpLimPu - uwVoltAccStep))
  624. // {
  625. // ass_stCalOut.swVoltLimitPu += uwVoltAccStep;//ass_stCalCoef.uwStartUpGainAddStep;
  626. // }
  627. // else
  628. // {
  629. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  630. // }
  631. /* TorqueRef Select Coef */
  632. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  633. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  634. {
  635. ass_stCalCoef.swTorqFilterGain = Q14_1;
  636. }
  637. /* Switch to ReduceCurrent FSM */
  638. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0))
  639. {
  640. /* When CandanceFreq=0 or BikeGear=0*/
  641. ass_pvt_swVoltCnt=0;
  642. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  643. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  644. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  645. ass_stCalOut.blTorqPIFlg = FALSE;
  646. ass_stCalCoef.swAss2SpdCNT = 0;
  647. ass_stCalCoef.sw2StopCNT = 0;
  648. stStopOrigCoef.k = (SLONG)ass_stCalCoef.swSmoothGain;
  649. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  650. Ass_FSM = ReduceCurrent;
  651. }
  652. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  653. {
  654. /* When InstantTorq < StopTorq and hold half circle */
  655. // if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  656. // {
  657. // ass_stCalCoef.swAss2SpdCNT++;
  658. // }
  659. // if (ass_stCalCoef.swAss2SpdCNT > (ass_stParaCong.uwCadPulsePerCirc >> 1 ) || ass_stCalIn.uwcadancePer == 0)
  660. // {
  661. // ass_pvt_uwTorqAccCnt=0;
  662. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  663. // asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  664. // asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  665. // ass_stCalCoef.swAss2SpdCNT = 0;
  666. // ass_stCalCoef.sw2StopCNT = 0;
  667. // stStopOrigCoef.k = (SLONG)ass_stCalCoef.swSmoothGain;
  668. // stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  669. // ass_stCalOut.blTorqPIFlg = FALSE;
  670. // Ass_FSM = ReduceCurrent;
  671. // }
  672. ass_stCalCoef.swAss2SpdCNT++;
  673. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  674. if(uwTmpStopCnt < 300)
  675. {
  676. uwTmpStopCnt = 300;
  677. }
  678. else if(uwTmpStopCnt > 1000)
  679. {
  680. uwTmpStopCnt = 1000;
  681. }
  682. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  683. {
  684. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  685. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  686. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  687. ass_stCalCoef.swAss2SpdCNT = 0;
  688. ass_stCalCoef.sw2StopCNT = 0;
  689. ass_stCalOut.blTorqPIFlg = FALSE;
  690. Ass_FSM = ReduceCurrent;
  691. }
  692. }
  693. else
  694. {
  695. ass_stCalCoef.swAss2SpdCNT = 0;
  696. }
  697. break;
  698. case SpeedAssit:
  699. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  700. /*电机速度指令斜坡,保证低速运行不停机*/
  701. if (ass_stCalOut.swSpeedRef >= 0) //ass_stCalCoef.uwSpeedConstantCommand) // Q15
  702. {
  703. ass_stCalOut.swSpeedRef -= 100;
  704. }
  705. else
  706. {
  707. ass_stCalOut.swSpeedRef += 10;
  708. }
  709. if(ass_stCalOut.swSpeedRef < 0)
  710. {
  711. ass_stCalOut.swSpeedRef = 0;
  712. }
  713. asr_stTorqSpdPIIn.swSpdRefPu = ass_stCalIn.swDirection*ass_stCalOut.swSpeedRef;
  714. asr_stTorqSpdPIIn.swSpdFdbPu = ass_stCalIn.swSpdFbkPu; // Q15
  715. asr_stTorqSpdPIIn.swIqMaxPu = ass_stCalCoef.swSpdLoopAbsCurMax; // ass_stCalCoef.uwCurrentMaxPu;
  716. asr_stTorqSpdPIIn.swIqMinPu = -ass_stCalCoef.swSpdLoopAbsCurMax; // ass_stCalCoef.uwCurrentMaxPu;
  717. asr_voSpdPI(&asr_stTorqSpdPIIn, &asr_stTorqSpdPICoef, &asr_stTorqSpdPIOut);
  718. ass_stCalOut.swTorSpdLoopCurrentTemp = abs(asr_stTorqSpdPIOut.swIqRefPu);
  719. /* Switch to StopAssit FSM */
  720. if(abs(ass_stCalIn.swSpdFbkPu) < SPD_RPM2PU(200))
  721. {
  722. ass_stCalCoef.sw2StopCNT = 0;
  723. ass_stCalCoef.StartFlag = 0;
  724. ass_stCalCoef.uwStartUpTargetGain = 0;
  725. Ass_FSM = StopAssit;
  726. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  727. stStopOrigCoef.k = 0;
  728. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  729. ass_stCalCoef.swCoefStep = 0;
  730. }
  731. break;
  732. case Spd2Torq:
  733. /*加速啮合,速度指令斜坡快速追踪踏频*/
  734. if (ass_stCalIn.uwSpdFbkAbsPu < ((ass_stCalOut.swCadSpd2MotSpd*3) >> 1))
  735. {
  736. ass_stCalOut.swSpeedRef += 100;
  737. }
  738. else
  739. {
  740. // ass_stCalOut.swSpeedRef -= 4;
  741. }
  742. if (ass_stCalOut.swSpeedRef > ((ass_stCalOut.swCadSpd2MotSpd*3) >> 1))
  743. {
  744. ass_stCalOut.swSpeedRef = ((ass_stCalOut.swCadSpd2MotSpd*3) >> 1);
  745. }
  746. asr_stTorqSpdPIIn.swSpdRefPu = ass_stCalIn.swDirection*ass_stCalOut.swSpeedRef;
  747. asr_stTorqSpdPIIn.swSpdFdbPu = ass_stCalIn.swSpdFbkPu; // Q15
  748. asr_stTorqSpdPIIn.swIqMaxPu = ass_stCalCoef.swSpdLoopAbsCurMax; // Q14
  749. asr_stTorqSpdPIIn.swIqMinPu = -ass_stCalCoef.swSpdLoopAbsCurMax; // Q14
  750. asr_voSpdPI(&asr_stTorqSpdPIIn, &asr_stTorqSpdPICoef, &asr_stTorqSpdPIOut);
  751. ass_stCalOut.swTorSpdLoopCurrentTemp = abs(asr_stTorqSpdPIOut.swIqRefPu);
  752. /*啮合后切换至带速启动*/
  753. ass_pvt_uwSpd2TorqCnt++;
  754. if (ass_pvt_uwSpd2TorqCnt > 150)//ass_stCalIn.uwSpdFbkAbsPu > ass_stCalOut.swCadSpd2MotSpd )// && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssStopThreshold) // Q15
  755. {
  756. ass_stCalCoef.StartFlag = 0;
  757. ass_stCalCoef.uwStartUpTargetGain = 0;
  758. swTmpSpdtoTorqCur = ass_swTorq2CurPu(swTeTorAssitPu1);
  759. slTmpSmoothCur = ((ULONG)abs(asr_stTorqSpdPIOut.swIqRefPu) << 12) /
  760. swTmpSpdtoTorqCur; // abs(asr_stTorqSpdPIOut.swIqRefPu)/ass_swTorq2CurPu(swTeTorAssitPu1)
  761. if (slTmpSmoothCur > Q12_1)
  762. {
  763. slTmpSmoothCur = Q12_1;
  764. }
  765. else
  766. {}
  767. ass_stCalCoef.swSmoothGain = 0;//Q12_1 >> 1;
  768. ass_pvt_uwSpd2TorqCnt = 0;
  769. Ass_FSM = StartupCruise;
  770. }
  771. /* Switch to ReduceCurrent FSM */
  772. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0))
  773. {
  774. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  775. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  776. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  777. ass_stCalCoef.swAss2SpdCNT = 0;
  778. Ass_FSM = ReduceCurrent;
  779. stStopOrigCoef.k = (SLONG)ass_stCalCoef.swSmoothGain;
  780. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  781. }
  782. else if ((ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) // Q14
  783. {
  784. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  785. {
  786. ass_stCalCoef.swAss2SpdCNT++;
  787. }
  788. if (ass_stCalCoef.swAss2SpdCNT > (ass_stParaCong.uwCadPulsePerCirc >> 1)|| ass_stCalIn.uwcadance == 0)
  789. {
  790. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  791. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  792. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  793. ass_stCalCoef.swAss2SpdCNT = 0;
  794. Ass_FSM = ReduceCurrent;
  795. stStopOrigCoef.k = (SLONG)ass_stCalCoef.swSmoothGain;
  796. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  797. }
  798. }
  799. else
  800. {
  801. ass_stCalCoef.swAss2SpdCNT = 0;
  802. }
  803. break;
  804. case StartupCruise:
  805. if (ass_stCalCoef.StartFlag == 0)
  806. {
  807. ass_stCalCoef.swSmoothGain += ass_stCalCoef.uwStartUpGainAddStep;// / ass_stCalIn.uwGearSt; //助力比斜坡,与用户设置以及档位相关
  808. if (ass_stCalCoef.swSmoothGain >= ass_stCalCoef.uwStartupCruiseGain)
  809. {
  810. ass_stCalCoef.StartFlag = 1;
  811. }
  812. }
  813. else if (ass_stCalCoef.StartFlag == 1)
  814. {
  815. ass_stCalCoef.swSmoothGain -= ass_stCalCoef.uwStartUpGainAddStep;// / ass_stCalIn.uwGearSt; //助力比斜坡,与用户设置以及档位相关
  816. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  817. {
  818. ass_stCalCoef.swCadanceCNT++;
  819. }
  820. if (ass_stCalCoef.swSmoothGain < Q12_1)
  821. {
  822. ass_stCalCoef.swSmoothGain = Q12_1;
  823. if (ass_stCalCoef.swCadanceCNT > ass_stCalCoef.uwStartUpTimeCadenceCnt)
  824. {
  825. Ass_FSM = TorqueAssit;
  826. ass_stCalCoef.swAss2SpdCNT = 0;
  827. ass_stCalCoef.swCadanceCNT = 0;
  828. ass_stCalCoef.sw2StopCNT = 0;
  829. }
  830. }
  831. }
  832. /* Switch to ReduceCurrent FSM */
  833. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0))
  834. {
  835. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  836. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  837. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  838. ass_stCalCoef.swAss2SpdCNT = 0;
  839. ass_stCalCoef.sw2StopCNT = 0;
  840. Ass_FSM = ReduceCurrent;
  841. stStopOrigCoef.k = (SLONG)ass_stCalCoef.swSmoothGain;
  842. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  843. }
  844. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  845. {
  846. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  847. {
  848. ass_stCalCoef.swAss2SpdCNT++;
  849. }
  850. if (ass_stCalCoef.swAss2SpdCNT > (ass_stParaCong.uwCadPulsePerCirc >> 1) || ass_stCalIn.uwcadancePer == 0)
  851. {
  852. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  853. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  854. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  855. ass_stCalCoef.swAss2SpdCNT = 0;
  856. ass_stCalCoef.sw2StopCNT = 0;
  857. Ass_FSM = ReduceCurrent;
  858. stStopOrigCoef.k = (SLONG)ass_stCalCoef.swSmoothGain;
  859. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  860. }
  861. }
  862. else
  863. {
  864. ass_stCalCoef.swAss2SpdCNT = 0;
  865. }
  866. break;
  867. case ReduceCurrent:
  868. /* Switch to StopAssit FSM */
  869. if(ass_stCalCoef.swSmoothGain <= 0)
  870. {
  871. ass_stCalCoef.swSmoothGain = 0;
  872. ass_stCalCoef.swTorqFilterGain = 0;
  873. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  874. ass_stCalCoef.swCadanceGain = 0;
  875. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  876. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_stCalOut.swTorAssistCurrent) << 16;
  877. asr_stTorqSpdPIOut.swIqRefPu = ass_stCalOut.swTorAssistCurrent;
  878. Ass_FSM = StopAssit;
  879. }
  880. else
  881. {
  882. /* Reduce Curret Coef to Zero*/
  883. ass_stCalCoef.swSmoothGain -=40;
  884. }
  885. /* Switch to Startup FSM */
  886. if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  887. {
  888. Ass_FSM = Startup;
  889. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  890. ass_stCalCoef.sw2StopCNT = 0;
  891. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  892. }
  893. break;
  894. case StopAssit:
  895. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  896. /* Switch to Startup FSM */
  897. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  898. {
  899. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  900. {
  901. ass_stCalCoef.sw2StopCNT = 0;
  902. ass_pvt_swVoltCnt = 0;
  903. ass_stCalOut.swVoltLimitPu = swTmpVoltPu;
  904. ass_pvt_stCurLpf.slY.sw.hi = 0;
  905. Ass_FSM = Startup;
  906. }
  907. }
  908. else
  909. {
  910. if (ass_stCalIn.uwtorquelpf > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  911. {
  912. ass_pvt_uwSpd2TorqCnt = 0;
  913. ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  914. ass_stCalCoef.sw2StopCNT = 0;
  915. ass_pvt_swVoltCnt = 0;
  916. ass_stCalOut.swVoltLimitPu = swTmpVoltPu;
  917. ass_pvt_stCurLpf.slY.sw.hi = 0;
  918. Ass_FSM = Startup;
  919. }
  920. }
  921. /* Assit Exit */
  922. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  923. {
  924. ass_stCalCoef.sw2StopCNT++;
  925. }
  926. else
  927. {
  928. if (ass_stCalCoef.sw2StopCNT >= 1)
  929. {
  930. ass_stCalCoef.sw2StopCNT--;
  931. }
  932. }
  933. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0))// 3s
  934. {
  935. ass_stCalCoef.sw2StopCNT = 0;
  936. ass_stCalCoef.blAssistflag = FALSE;
  937. }
  938. break;
  939. default:
  940. break;
  941. }
  942. /* Bikespeed Limit */
  943. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  944. {
  945. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  946. }
  947. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  948. {
  949. ass_stCalCoef.swBikeSpeedGain =
  950. Q12_1 -
  951. ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8); // Q12
  952. uwTorqAccStep = 10;
  953. uwTorqDecStep = 10;
  954. }
  955. else
  956. {
  957. ass_stCalCoef.swBikeSpeedGain = 0;
  958. uwTorqAccStep = 10;
  959. uwTorqDecStep = 10;
  960. }
  961. /* Assist Current Output in each FSM */
  962. switch (Ass_FSM)
  963. {
  964. case Startup:
  965. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  966. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  967. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  968. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  969. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  970. {
  971. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  972. }
  973. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  974. {
  975. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  976. }
  977. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  978. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  979. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  980. break;
  981. case TorqueAssit:
  982. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  983. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  984. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  985. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  986. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  987. {
  988. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  989. }
  990. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  991. {
  992. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  993. }
  994. #if CURSWITCH
  995. /* Ajust CurrentRef growth and decline rate */
  996. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  997. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  998. {
  999. ass_pvt_uwTorqAccCnt++;
  1000. if(ass_pvt_uwTorqAccCnt >= 2)
  1001. {
  1002. ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  1003. ass_pvt_uwTorqAccCnt = 0;
  1004. }
  1005. }
  1006. else if(((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < (-1)))
  1007. {
  1008. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  1009. {
  1010. ass_stCalOut.swTorRefEnd -= uwTorqDecStep;
  1011. }
  1012. // ass_pvt_uwTorqDecCnt++;
  1013. // if(ass_pvt_uwTorqDecCnt >= 10)
  1014. // {
  1015. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  1016. // ass_pvt_uwTorqDecCnt = 0;
  1017. // }
  1018. }
  1019. else
  1020. {
  1021. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  1022. }
  1023. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  1024. /* Torq Clzloop Test */
  1025. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  1026. // {
  1027. // if(!ass_stCalOut.blTorqPIFlg)
  1028. // {
  1029. // /* Initial value */
  1030. // ass_stTorqPIOut.slIRefPu = 0;
  1031. // swCurSwitch = abs(ass_stCalOut.swTorRefTarget); //abs(ass_stCalOut.swAssitCurRef);
  1032. // ass_stCalOut.blTorqPIFlg = TRUE;
  1033. // }
  1034. //
  1035. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  1036. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  1037. // ass_stTorqPIIn.swImaxPu = 0;
  1038. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  1039. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  1040. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  1041. // }
  1042. // else
  1043. // {
  1044. // ass_stCalOut.blTorqPIFlg = FALSE;
  1045. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  1046. // }
  1047. #else
  1048. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  1049. #endif
  1050. break;
  1051. case StartupCruise:
  1052. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1053. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1054. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1055. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1056. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1057. {
  1058. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1059. }
  1060. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1061. {
  1062. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1063. }
  1064. #if CURSWITCH
  1065. /* Ajust CurrentRef growth and decline rate */
  1066. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  1067. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  1068. {
  1069. ass_pvt_uwTorqAccCnt++;
  1070. if(ass_pvt_uwTorqAccCnt >= 1)
  1071. {
  1072. ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  1073. ass_pvt_uwTorqAccCnt = 0;
  1074. }
  1075. }
  1076. else if(((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < (-1)))
  1077. {
  1078. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  1079. {
  1080. ass_stCalOut.swTorRefEnd -= uwTorqDecStep;
  1081. }
  1082. }
  1083. else
  1084. {
  1085. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  1086. }
  1087. if(ass_stCalOut.swTorRefEnd < ass_stCalOut.swTorSpdLoopCurrentTemp)
  1088. {
  1089. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorSpdLoopCurrentTemp;
  1090. //ass_stCalOut.swTorSpdLoopCurrentTemp = 0; // 启动前电流最小为速度环电流,启动后最小电流为0
  1091. }
  1092. else
  1093. {
  1094. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefEnd;
  1095. }
  1096. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  1097. #else
  1098. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  1099. if(ass_stCalOut.swTorAssistCurrentTemp < ass_stCalOut.swTorSpdLoopCurrentTemp)
  1100. {
  1101. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection*ass_stCalOut.swTorSpdLoopCurrentTemp;
  1102. //ass_stCalOut.swTorSpdLoopCurrentTemp = 0; // 启动前电流最小为速度环电流,启动后最小电流为0
  1103. }
  1104. else
  1105. {
  1106. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorAssistCurrentTemp;
  1107. }
  1108. #endif
  1109. break;
  1110. case ReduceCurrent:
  1111. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1112. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1113. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1114. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1115. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1116. {
  1117. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1118. }
  1119. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1120. {
  1121. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1122. }
  1123. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  1124. break;
  1125. case SpeedAssit:
  1126. ass_stCalOut.swTorAssistCurrentTemp = asr_stTorqSpdPIOut.swIqRefPu; // ass_stCalOut.swTorSpdLoopCurrentTemp;
  1127. break;
  1128. case Spd2Torq:
  1129. ass_stCalOut.swTorAssistCurrentTemp = asr_stTorqSpdPIOut.swIqRefPu; // ass_stCalOut.swTorSpdLoopCurrentTemp;
  1130. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorAssistCurrentTemp;
  1131. break;
  1132. case StopAssit:
  1133. ass_stCalOut.swTorAssistCurrentTemp = 0;
  1134. ass_stCalOut.swTorRefEnd = 0;
  1135. break;
  1136. default:
  1137. break;
  1138. }
  1139. /* Assist Iqref Output */
  1140. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  1141. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  1142. /* Bikespeed Limit Coef*/
  1143. ass_stCalOut.swAssitCurRef = ((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain) >> 12;
  1144. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  1145. }
  1146. /**
  1147. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  1148. *
  1149. * @param coef polynomial coefficient a, b, c, d
  1150. * @param Value polynomial input value X
  1151. * @param Qnum polynomial input Q type
  1152. * @return UWORD polynomial output Y
  1153. */
  1154. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  1155. {
  1156. /* Limit the Output Current according to Bike Gear */
  1157. UWORD uwuwIqLimitTemp1;
  1158. uwuwIqLimitTemp1 = ((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10;
  1159. ass_stCurLimOut.uwIqlimit = uwuwIqLimitTemp1;
  1160. }
  1161. /**
  1162. * @brief
  1163. *
  1164. * @param
  1165. * @return
  1166. */
  1167. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  1168. {
  1169. /* Limit the Output Current according to Bike SOC */
  1170. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  1171. {
  1172. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  1173. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - (((SLONG)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  1174. }
  1175. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  1176. {
  1177. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  1178. }
  1179. else
  1180. {
  1181. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  1182. }
  1183. }
  1184. /**
  1185. * @brief Assist function
  1186. *
  1187. * @param coef polynomial coefficient a, b, c, d
  1188. * @param Value polynomial input value X
  1189. * @param Qnum polynomial input Q type
  1190. * @return UWORD polynomial output Y
  1191. */
  1192. void ass_voAssist(void)
  1193. {
  1194. /* Start Assist Jduge */
  1195. if (((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) || ass_stCalIn.uwtorquePer > 3000) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  1196. {
  1197. ass_stCalCoef.blAssistflag = TRUE;
  1198. }
  1199. if (ass_stCalCoef.blAssistflag == TRUE)
  1200. {
  1201. /* Calculate Iqref Limit */
  1202. UWORD uwIqLimitTemp;
  1203. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  1204. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  1205. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  1206. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  1207. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  1208. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  1209. ass_stCalCoef.swCurrentmax_torAssPu = ((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwTorWeight) >> 12; // Q14
  1210. ass_stCalCoef.swCurrentmax_cadAssPu = ((SLONG)ass_stCalCoef.uwCurrentMaxPu * ass_stParaSet.uwCadenceWeight) >> 12;
  1211. /* Calculate Assist Current, Iqref*/
  1212. AssitCuvApplPerVolt();
  1213. /* Iqref Limit */
  1214. if (ass_stCalOut.swAssitCurRef > ass_stCalCoef.uwCurrentMaxPu)
  1215. {
  1216. ass_stCalOut.swAssitCurRef = ass_stCalCoef.uwCurrentMaxPu;
  1217. }
  1218. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1219. {
  1220. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1221. }
  1222. else
  1223. {}
  1224. }
  1225. else
  1226. {
  1227. ass_stCalOut.swAssitCurRef = 0;
  1228. }
  1229. }
  1230. /**
  1231. * @brief
  1232. *
  1233. * @param
  1234. * @return
  1235. */
  1236. void ass_voMoveAverageFilter(MAF_IN *in)
  1237. {
  1238. in->slSum -= in->swBuffer[in->uwIndex];
  1239. in->swBuffer[in->uwIndex] = in->swValue;
  1240. in->slSum += (SQWORD)in->swValue;
  1241. if (!in->blSecFlag)
  1242. {
  1243. in->slAverValue = (SLONG)(in->slSum / (in->uwIndex + 1));
  1244. }
  1245. else
  1246. {
  1247. in->slAverValue = (SLONG)(in->slSum / in->uwLength);
  1248. }
  1249. in->uwIndex++;
  1250. if (in->uwIndex >= in->uwLength)
  1251. {
  1252. in->blSecFlag = TRUE;
  1253. in->uwIndex = 0;
  1254. }
  1255. }
  1256. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1257. {
  1258. UWORD i;
  1259. in->uwIndex = 0;
  1260. in->slSum = 0;
  1261. in->blSecFlag = FALSE;
  1262. for (i = 0; i < 64; i++)
  1263. {
  1264. in->swBuffer[i] = 0;
  1265. }
  1266. }