spdctrmode.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: spdctrmode.c
  4. Partner Filename: spdctrmode.h
  5. Description: Speed control mode
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _SPDCTRMODE_C_
  20. #define _SPDCTRMODE_C_
  21. #endif
  22. /************************************************************************
  23. Included File
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "AssistCurve.h"
  28. #include "cmdgennew.h"
  29. #include "CodePara.h"
  30. #include "FSM_2nd.h"
  31. #include "api.h"
  32. /************************************************************************
  33. Constant Table (N/A)
  34. *************************************************************************/
  35. /************************************************************************
  36. Private Variables
  37. *************************************************************************/
  38. static LPF_OUT swTmpSpdRateLpf;
  39. static SWORD swTmpSpdRate = 0;
  40. static SWORD swTmpSpdFbkPuZ1 = 0;
  41. static SWORD swSpdRateAbsPu;
  42. static SWORD swTestIqref;
  43. static UWORD DCPswitch = 0;
  44. static CRD_PARK_IN Test_U_in;
  45. static CRD_PARK_OUT Test_U_out;
  46. /*************************************************************************
  47. Exported Functions (N/A)
  48. *************************************************************************/
  49. /***************************************************************
  50. Function: scm_voSpdCtrMdInit;
  51. Description: Speed control mode initializing function
  52. Call by: rmd_voModeSchd();
  53. Input Variables: N/A
  54. Output/Return Variables: N/A
  55. Subroutine Call: ...;
  56. Reference: N/A
  57. ****************************************************************/
  58. void scm_voSpdCtrMdInit(void)
  59. {
  60. // /* PWM init */
  61. // sysctrl_voPwmInit();
  62. /*cmd handle Initial */
  63. cmd_voCmdInit();
  64. /* Current PI init */
  65. acr_voCurPIInit();
  66. /* Current decoupling init */
  67. acr_voUdqDcpInit();
  68. /* Sensorless observer init */
  69. obs_voObsInit();
  70. /* SPI position sensor init */
  71. spi_voResolverInit();
  72. /* Speed PI init */
  73. asr_voSpdPIInit();
  74. /* Flux weakening init */
  75. flx_voInit();
  76. // fw_voInit();
  77. /* Power Limit init */
  78. pwr_voPwrLimInit();
  79. /* SVPWM init */
  80. pwm_voInit();
  81. /* Dead time init */
  82. dbc_voDBCompInit();
  83. /* Contant voltage brake init */
  84. cvb_voBrakeInit();
  85. #ifdef RUN_ARCH_SIM
  86. /* switchHall init */
  87. switchhall_voInit();
  88. #endif
  89. /* Align pos startup open2clz clzloop init */
  90. align_voInit();
  91. /* Torque observer init */
  92. torqobs_voInit();
  93. /* Global variablles init */
  94. scm_stSpdFbkLpf.slY.sw.hi = 0;
  95. scm_swSpdRefPu = 0;
  96. scm_swUalphaPu = 0; // Q14
  97. scm_swUbetaPu = 0; // Q14
  98. scm_stIqLoadLpf.slY.sl = 0;
  99. scm_stIdFbkLpf.slY.sl = 0; // Id feedback LPF
  100. scm_stIqFbkLpf.slY.sl = 0; // Iq feedback LPF
  101. scm_swIdRefPu = 0; // Q14
  102. scm_swIqRefPu = 0; // Q14
  103. scm_uwAngRefPu = 0; // Q15
  104. scm_uwAngParkPu = 0; // Q15
  105. scm_uwAngIParkPu = 0; // Q15
  106. scm_swRotateDir = 1; // Direction of motor rotate
  107. scm_ulStatCt = 0; // Status hold time count
  108. scm_uwAngManuPu = 0; // Q15, Angle given manually
  109. scm_slAngManuPu = 0;
  110. scm_slDragSpdPu = 0; // Q15, Drag speed
  111. scm_slDragSpdRefPu = 0; // Q29, intermediate Drag speed
  112. scm_blCurSwitchOvrFlg = FALSE; // Current switch over flag
  113. scm_blAngSwitchOvrFlg = FALSE; // Angle switch over flag
  114. scm_uwAngSwitchK = 0; // Angle switch weight value
  115. scm_swMotorPwrInWt = 0; // unit: w, Input power of motor
  116. scm_blCoefUpdateFlg = FALSE; // Coefficient update flag
  117. scm_stSpdFbkLpf.slY.sl = 0; // Speed feedback LPF
  118. scm_uwSpdFbkLpfAbsPu = 0; // Q15, Speed feedback LPF absolute
  119. scm_swMotorPwrInPu = 0; // Q15, Input power of motor
  120. scm_stMotoPwrInLpf.slY.sl = 0; // Input power of motor after LPF
  121. scm_swMotorPwrInLpfWt = 0; // unit: 0.1w, Input power of motor after LPF
  122. scm_uwMotorPwrInAvgPu = 0; // Q15, Input power of motor after average filter
  123. scm_swIdFdbLpfPu = 0;
  124. scm_swIqFdbLpfPu = 0;
  125. scm_swUdRefPu = 0;
  126. scm_swUqRefPu = 0;
  127. scm_swUalphaFbkPu = 0;
  128. scm_swUbetaFbkPu = 0;
  129. scm_swUalphaRefPu = 0;
  130. scm_swUbetaRefPu = 0;
  131. scm_swUalphaCompPu = 0;
  132. scm_swUbetaCompPu = 0;
  133. scm_uwHfiAngZ1Pu = 0;
  134. scm_slAngSumPu = 0;
  135. scm_slAngErrPu = 0;
  136. scm_blAngSumOvrFlg = FALSE;
  137. scm_uwRunMdSw = 1;
  138. scm_ulRunMdSwCt = 0;
  139. scm_ulCloseCt = 0;
  140. scm_uwStartMd = cp_stControlPara.swStartMode;
  141. scm_uwStartMdSw = scm_uwStartMd;
  142. scm_uwInitPosMd = cp_stControlPara.swInitPosMode;
  143. scm_uwInitPosMdSw = scm_uwInitPosMd;
  144. scm_uwHfiOvrCnt = 0;
  145. scm_slIdRefPu = 0;
  146. /* Private variables init */
  147. swTmpSpdRateLpf.slY.sl = 0;
  148. swTmpSpdRate = 0;
  149. swTmpSpdFbkPuZ1 = 0;
  150. swSpdRateAbsPu = 0;
  151. swTestIqref = 0;
  152. DCPswitch = 0;
  153. }
  154. /***************************************************************
  155. Function: scm_voSpdCtrMdCoef;
  156. Description: Speed control mode TBS scheduler
  157. Call by: tbs_voIsr();
  158. Input Variables: N/A
  159. Output/Return Variables: N/A
  160. Subroutine Call: ...;
  161. Reference: N/A
  162. ****************************************************************/
  163. void scm_voSpdCtrMdCoef(void)
  164. {
  165. ULONG ulLpfTm; // unit: us
  166. SLONG slLqPu = 0;
  167. ULONG ulAccel100rpmpsPu = USER_MOTOR_100RPMPS2PU_Q29;
  168. if (ABS(scm_swIqRefPu) < mn_swIqTurn1Pu)
  169. {
  170. scm_uwLqPu = cof_uwLqPu;
  171. }
  172. else
  173. {
  174. slLqPu = mn_slLqTurn1Pu + (((SLONG)ABS(scm_swIqRefPu) - mn_swIqTurn1Pu) * mn_swKLqSat >> 10); // Q10
  175. if (slLqPu < cof_uwLqMinPu)
  176. {
  177. scm_uwLqPu = cof_uwLqMinPu;
  178. }
  179. else if (slLqPu > cof_uwLqPu)
  180. {
  181. scm_uwLqPu = cof_uwLqPu;
  182. }
  183. else
  184. {
  185. scm_uwLqPu = (UWORD)slLqPu;
  186. }
  187. }
  188. spi_stResolverCoefIn.uwFbHz = cof_uwFbHz;
  189. spi_stResolverCoefIn.uwFreqTbcHz = FTBC_HZ;
  190. spi_stResolverCoefIn.uwSpdPllWvcHz = 30;//cp_stControlPara.swObsSpdPLLBandWidthHz; // Real Value, Unit:Hz
  191. spi_stResolverCoefIn.uwSpdPllMcoef = 2;//cp_stControlPara.swObsSpdPLLM;
  192. spi_voResolverCoef(&spi_stResolverCoefIn, &spi_stResolverCoef);
  193. /* Sensorless observer coefficient calculate */
  194. obs_stObsCoefIn.uwRbOm = cof_uwRbOm; // Real Value, unit: 0.01Ohm, Resistance base
  195. obs_stObsCoefIn.uwLbHm = cof_uwLbHm; // Real Value, unit: 0.01mH, Inductance base
  196. obs_stObsCoefIn.uwFluxbWb = cof_uwFluxbWb; // Real Value, unit: 0.01mWb, Flux linkage base
  197. obs_stObsCoefIn.uwFbHz = cof_uwFbHz; // Real Value, Unit:Hz frequency base
  198. obs_stObsCoefIn.uwRsOm = cp_stMotorPara.swRsOhm; // Real Value, unit: 0.01Ohm, Resistance base
  199. obs_stObsCoefIn.uwLqHm = (UWORD)(((ULONG)scm_uwLqPu * cof_uwLbHm) >> 10); // Real Value, unit: 0.01mH, q Inductance
  200. obs_stObsCoefIn.uwLdHm = cp_stMotorPara.swLdmH; // Real Value, unit: 0.01mH, d Inductance
  201. obs_stObsCoefIn.uwFluxWb = cp_stMotorPara.swFluxWb; // Real Value, unit: 0.01mWb, Flux linkage
  202. obs_stObsCoefIn.uwFreqTbcHz = FTBC_HZ; // Real Value, Unit:Hz Tbc
  203. obs_stObsCoefIn.uwFluxDampingRatio = cp_stControlPara.swObsFluxPIDampratio; // Real Value, unit:0.1
  204. obs_stObsCoefIn.uwFluxCrossFreqHz = cp_stControlPara.swObsFluxPICrossfreHz; // Real Value, unit:Hz
  205. obs_stObsCoefIn.uwSpdPllWvcHz = cp_stControlPara.swObsSpdPLLBandWidthHz; // Real Value, Unit:Hz
  206. obs_stObsCoefIn.uwSpdPllMcoef = cp_stControlPara.swObsSpdPLLM;
  207. obs_voObsCoef(&obs_stObsCoefIn, &obs_stObsCoefPu);
  208. /* Speed PI coefficient calculate */
  209. asr_stSpdPICoefIn.uwUbVt = VBASE;
  210. asr_stSpdPICoefIn.uwIbAp = IBASE;
  211. asr_stSpdPICoefIn.uwFbHz = FBASE;
  212. asr_stSpdPICoefIn.uwFTbsHz = FTBS_HZ;
  213. asr_stSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  214. asr_stSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  215. asr_stSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  216. asr_stSpdPICoefIn.uwMcoef = cp_stControlPara.swAsrPIM;
  217. asr_stSpdPICoefIn.uwWvcHz = cp_stControlPara.swAsrPIBandwidth;
  218. asr_stSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  219. asr_voSpdPICoef(&asr_stSpdPICoefIn, &asr_stSpdPICoef);
  220. /* Torque Observe coefficient calculate */
  221. torqobs_stCoefIn.uwUbVt = VBASE;
  222. torqobs_stCoefIn.uwIbAp = IBASE;
  223. torqobs_stCoefIn.uwFbHz = FBASE;
  224. torqobs_stCoefIn.uwFTbsHz = FTBS_HZ;
  225. torqobs_stCoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  226. torqobs_stCoefIn.uwMtJm = cp_stMotorPara.swJD;
  227. torqobs_stCoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  228. torqobs_stCoefIn.uwWtcHz = 50; // cp_stControlPara.swAsrPIBandwidth;
  229. torqobs_stCoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  230. torqobs_voCoef(&torqobs_stCoefIn, &torqobs_stCoef);
  231. mth_voLPFilterCoef(1000000 / 50, FTBS_HZ, &scm_stIqLoadLpf.uwKx); //50Hz
  232. /* Id PI coefficient calculate */
  233. acr_stCurIdPICoefIn.uwFbHz = FBASE;
  234. acr_stCurIdPICoefIn.uwUbVt = VBASE;
  235. acr_stCurIdPICoefIn.uwIbAp = IBASE;
  236. acr_stCurIdPICoefIn.uwLHm = cp_stMotorPara.swLdmH;
  237. acr_stCurIdPICoefIn.uwMtRsOh = cp_stMotorPara.swRsOhm;
  238. acr_stCurIdPICoefIn.uwFTbcHz = FTBC_HZ;
  239. acr_stCurIdPICoefIn.uwRaCoef = cp_stControlPara.swAcrRaCoef; // Coefficient of Active Resistance
  240. acr_stCurIdPICoefIn.uwWicHz = cp_stControlPara.swAcrPIBandwidth; // Current loop frequency bandwidth
  241. acr_voCurPICoef(&acr_stCurIdPICoefIn, &acr_stCurIdPICoef);
  242. /* Iq PI coefficient calculate */
  243. acr_stCurIqPICoefIn.uwFbHz = FBASE;
  244. acr_stCurIqPICoefIn.uwUbVt = VBASE;
  245. acr_stCurIqPICoefIn.uwIbAp = IBASE;
  246. acr_stCurIqPICoefIn.uwLHm = cp_stMotorPara.swLqmH;
  247. acr_stCurIqPICoefIn.uwMtRsOh = cp_stMotorPara.swRsOhm;
  248. acr_stCurIqPICoefIn.uwFTbcHz = FTBC_HZ;
  249. acr_stCurIqPICoefIn.uwRaCoef = cp_stControlPara.swAcrRaCoef;
  250. acr_stCurIqPICoefIn.uwWicHz = cp_stControlPara.swAcrPIBandwidth;
  251. acr_voCurPICoef(&acr_stCurIqPICoefIn, &acr_stCurIqPICoef);
  252. /* Current decoupling coefficient calculate */
  253. acr_stUdqDcpCoefIn.uwLdHm = cp_stMotorPara.swLdmH;
  254. acr_stUdqDcpCoefIn.uwLqHm = cp_stMotorPara.swLqmH;
  255. acr_stUdqDcpCoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  256. acr_stUdqDcpCoefIn.uwUbVt = VBASE;
  257. acr_stUdqDcpCoefIn.uwFbHz = FBASE;
  258. acr_stUdqDcpCoefIn.uwIbAp = IBASE;
  259. acr_voUdqDcpCoef(&acr_stUdqDcpCoefIn, &acr_stUdqDcpCoef);
  260. /* Id feedback low pass filter coef */
  261. ulLpfTm = 1000000 / cp_stControlPara.swAcrCurFbLpfFre;
  262. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIdFbkLpf.uwKx);
  263. /* Iq feedback low pass filter coef */
  264. ulLpfTm = 1000000 / cp_stControlPara.swAcrCurFbLpfFre;
  265. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIqFbkLpf.uwKx);
  266. /* Coefficient update only once */
  267. if (!scm_blCoefUpdateFlg)
  268. {
  269. /* Deadband compensation coefficient calculate */
  270. dbc_stDbCompCoefIn.uwDeadBandTimeNs = cp_stControlPara.swIPMDeadTimeNs; // unit: ns, Dead band time
  271. dbc_stDbCompCoefIn.uwPosSwOnTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-on time at positive current
  272. dbc_stDbCompCoefIn.uwPosSwOffTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-off time at positive current
  273. dbc_stDbCompCoefIn.uwNegSwOnTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-on time at negative current
  274. dbc_stDbCompCoefIn.uwNegSwOffTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-off time at negative current
  275. dbc_stDbCompCoefIn.ulPWMPerUs = PWM_PERIOD_US; // unit: 0.1us, PWM period
  276. dbc_stDbCompCoefIn.uwKcoefVtPerAp = cp_stControlPara.swDbcK; // Q6, Deadband compensation slope coefficient
  277. dbc_stDbCompCoefIn.uwVBaseVt = VBASE; // Q0, Vbase
  278. dbc_stDbCompCoefIn.uwIBaseAp = IBASE; // Q0, Ibase
  279. dbc_voDBCompCoef(&dbc_stDbCompCoefIn, &dbc_stDbCompCoef);
  280. /* Flux weakening coefficient calculate */
  281. flx_stCtrlCoefIn.swIdMaxAp = (SWORD)cp_stMotorPara.swIdMaxA; // Q0,unit: 0.01A
  282. flx_stCtrlCoefIn.swIdMinAp = (SWORD)cp_stMotorPara.swIdMinA; // Q0,unit: 0.01A
  283. flx_stCtrlCoefIn.uwRsOhm = cp_stMotorPara.swRsOhm; // Q0,unit: 0.1mOhm
  284. flx_stCtrlCoefIn.swIdPIOutMinAp = (SWORD)cp_stControlPara.swFwIdPIOutMin; // Q0,unit: 0.01A
  285. flx_stCtrlCoefIn.uwCharCurCrossFreqHz = cp_stControlPara.swFwCharCurCrossFre; // Q0,unit: SQRT(1/2piR)
  286. flx_stCtrlCoefIn.uwCharCurDampRatio = cp_stControlPara.swFwCharCurDampRatio; // Q0,unit: SQRT(pi/2R)
  287. flx_stCtrlCoefIn.uwIdRegKpPu = cp_stControlPara.swFwIdKpPu; // Q16,unit: A/V2
  288. flx_stCtrlCoefIn.uwIdRegKiPu = cp_stControlPara.swFwIdKiPu; // Q16,unit: A/V2
  289. flx_stCtrlCoefIn.uwPWMDutyMax = cp_stControlPara.swFwPWMMaxDuty; // Q0,%
  290. flx_stCtrlCoefIn.uwVdcLpfFreqHz = cp_stControlPara.swFwVdcLPFFre; // Q0,unit: Hz
  291. flx_stCtrlCoefIn.uwVdcMinCalcTmMs = cp_stControlPara.swFwVdcMinCalTMms; // Q0,unit: ms
  292. flx_stCtrlCoefIn.uwFwCurLimAp = cp_stMotorPara.swIpeakMaxA; // Q0,unit: 0.01A
  293. flx_stCtrlCoefIn.uwIdMinLimRatio = cp_stControlPara.swFwIdMinLimRatio; // Q0,0.01
  294. flx_stCtrlCoefIn.uwUbVt = VBASE; // Q0,unit: 0.1V, Voltage base
  295. flx_stCtrlCoefIn.uwFreqTbcHz = FTBC_HZ; // Q0
  296. flx_stCtrlCoefIn.uwIBaseAp = IBASE; // Q0,unit: 0.01A, Base Current
  297. flx_stCtrlCoefIn.uwFBaseHz = FBASE; // Q0,unit: Hz, Base Frequency
  298. flx_voCoef(&flx_stCtrlCoefIn, &flx_stCtrlCoef);
  299. // fw_stFluxWeakeningCoefInPu
  300. // fw_voFluxWeakeningCoef(fw_stFluxWeakeningCoefInPu,flx_stCtrlCoef)
  301. /* Constant vlotage brake coefficient calculate */
  302. cvb_stBrakeCoefIn.uwVdcCvbVt = cp_stControlPara.swCvbConstantVolBrakeV;
  303. cvb_stBrakeCoefIn.uwLowSpdRpm = cp_stControlPara.swCvbConstantSpdLowRpm;
  304. cvb_stBrakeCoefIn.swIqRefMaxAp = cp_stMotorPara.swIpeakMaxA;
  305. cvb_stBrakeCoefIn.swIdRefMaxAp = cp_stMotorPara.swIdMaxA;
  306. cvb_stBrakeCoefIn.swIdRefMinAp = cp_stMotorPara.swIdMinA;
  307. cvb_stBrakeCoefIn.uwVBaseVt = VBASE;
  308. cvb_stBrakeCoefIn.uwIBaseAp = IBASE;
  309. cvb_stBrakeCoefIn.uwFBaseHz = FBASE;
  310. cvb_stBrakeCoefIn.uwMotorPairs = cp_stMotorPara.swMotrPolePairs;
  311. cvb_voBrakeCoef(&cvb_stBrakeCoefIn, &cvb_stBrakeCoef);
  312. /* Speed feedback low pass filter coef */
  313. ulLpfTm = 1000000 / cp_stControlPara.swAsrSpdFbLPFFre;
  314. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stSpdFbkLpf.uwKx);
  315. /* Power limit coef */
  316. ulLpfTm = 1000000 / cp_stControlPara.swPwrLimitLPFFre;
  317. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stMotoPwrInLpf.uwKx);
  318. pwr_stPwrLimCofIn.swPwrLimW = cp_stControlPara.swPwrLimitValWt; // Q0, unit: 0.1w, Power limit value
  319. pwr_stPwrLimCofIn.uwPwrErrW = cp_stControlPara.swPwrLimitErrWt; // Q0, unit: 0.1w, Start power limit when "VAL - ERR"
  320. pwr_stPwrLimCofIn.swIqMaxAp = cp_stMotorPara.swIpeakMaxA; // Q0, unit: 0.01A, Max phase current (peak value)
  321. pwr_stPwrLimCofIn.uwIBaseAp = IBASE; // Q0,unit: 0.01A, Base Current
  322. pwr_stPwrLimCofIn.uwUbVt = VBASE; // Q0,unit: 0.1V, Voltage base
  323. pwr_stPwrLimCofIn.uwPwrLimPIKp = cp_stControlPara.swPwrLimitKpPu;
  324. pwr_stPwrLimCofIn.uwPwrLimPIKi = cp_stControlPara.swPwrLimitKiPu;
  325. pwr_stPwrLimCofIn.uwPwrLimSTARTCe = cp_stControlPara.swAlmPwrLimitStartTempVal;
  326. pwr_stPwrLimCofIn.uwPwrLimENDCe = cp_stControlPara.swAlmOverHeatCeVal;
  327. pwr_voPwrLimCof(&pwr_stPwrLimCofIn, &pwr_stPwrLimCof);
  328. /*Accelaration&Decelaration limit*/
  329. if (ABS(scm_swSpdRefPu) < USER_MOTOR_300RPM2PU)
  330. {
  331. cmd_stCmdCoefIn.ulAccelPu = ulAccel100rpmpsPu*2; // Q29
  332. }
  333. else
  334. {
  335. cmd_stCmdCoefIn.ulAccelPu = ulAccel100rpmpsPu*2; // Q29
  336. }
  337. cmd_stCmdCoefIn.ulDecelPu = ulAccel100rpmpsPu*10; // Q29
  338. cmd_stCmdCoefIn.swBrakeSpdDeltaPu = USER_MOTOR_100RPM2PU;
  339. cmd_voCmdCoef(&cmd_stCmdCoefIn, &cmd_stCmdCoef);
  340. pwm_stGenCoefIn.uwPWMDutyMax = cp_stControlPara.swPWMMaxDuty;
  341. pwm_stGenCoefIn.uwPWM7To5Duty = cp_stControlPara.swPWM7to5Duty;
  342. pwm_stGenCoefIn.uwPWMMinSample1Pu = cp_stControlPara.swPWMMinSampleDuty1;
  343. pwm_stGenCoefIn.uwPWMMinSample2Pu = cp_stControlPara.swPWMMinSampleDuty2;
  344. pwm_stGenCoefIn.uwPWMMinSample3Pu = cp_stControlPara.swPWMMinSampleDuty3;
  345. pwm_stGenCoefIn.uwSampleSteadyPu = cp_stControlPara.swPWMSampleToSteady;
  346. pwm_stGenCoefIn.uwSingelResisSamplePu = cp_stControlPara.swPWMSampleSigR;
  347. pwm_stGenCoefIn.uwOvmNo = cp_stControlPara.swPWMOverMdlMode;
  348. pwm_stGenCoefIn.uwPWMPd = HW_INIT_PWM_PERIOD;
  349. pwm_voGenCoef(&pwm_stGenCoefIn, &pwm_stGenCoef);
  350. scm_uwAcrLimCof = (UWORD)((ULONG)cp_stControlPara.swPWMMaxDuty * cp_stControlPara.uwAcrCurOutLim / 1000); // Q15
  351. scm_uwUdcpLimCof = (UWORD)((ULONG)cp_stControlPara.swPWMMaxDuty * cp_stControlPara.uwAcrUdcpOutLim / 1000); // Q15
  352. }
  353. }
  354. /***************************************************************
  355. Function: scm_voSpdCtrMdTbs;
  356. Description: Speed control mode TBS scheduler
  357. Call by: tbs_voIsr();
  358. Input Variables: N/A
  359. Output/Return Variables: N/A
  360. Subroutine Call: ...;
  361. Reference: N/A
  362. ****************************************************************/
  363. void scm_voSpdCtrMdTbs(void)
  364. {
  365. SWORD swIqLowerPu;
  366. /* Speed feedback LPF */
  367. if(cp_stFlg.ThetaGetModelSelect == ANG_OBSERVER)
  368. {
  369. mth_voLPFilter(obs_stObsOutPu.swElecFreqPu, &scm_stSpdFbkLpf);
  370. }
  371. else if(cp_stFlg.ThetaGetModelSelect == ANG_RESOLVER)
  372. {
  373. mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stSpdFbkLpf);
  374. }
  375. else if(cp_stFlg.ThetaGetModelSelect == ANG_SWITCHHALL)
  376. {
  377. scm_stSpdFbkLpf.slY.sw.hi = switchhall_stOut.swLowSpdLpfPu;
  378. }
  379. else
  380. {
  381. //do nothing
  382. }
  383. /* Speed feedback Absolute */
  384. scm_uwSpdFbkLpfAbsPu = (UWORD)ABS(scm_stSpdFbkLpf.slY.sw.hi);
  385. /*============================================================
  386. Speed command generator to generate speed ramp
  387. =============================================================*/
  388. if(curSpeed_state.state == ClzLoop || curSpeed_state.state == Open2Clz)
  389. {
  390. cmd_stCmdIn.swSpdCmdRpm = (SWORD)uart_slSpdRefRpm;
  391. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  392. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  393. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  394. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  395. }
  396. else if (curSpeed_state.state == StartUp)
  397. {
  398. SWORD tempSpeed = 0;
  399. tempSpeed = (cp_stControlPara.swDragSpdHz * 60 / cp_stMotorPara.swMotrPolePairs);
  400. if(cp_stFlg.RunModelSelect == ClZLOOP)
  401. {
  402. if(uart_slSpdRefRpm>0)
  403. {
  404. cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  405. }
  406. else
  407. {
  408. cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  409. }
  410. }
  411. else if(cp_stFlg.RunModelSelect == VFContorl || cp_stFlg.RunModelSelect == IFContorl)
  412. {
  413. if(cp_stFlg.RotateDirectionSelect == ForwardRotate)
  414. {
  415. cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  416. }
  417. else
  418. {
  419. cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  420. }
  421. }
  422. else
  423. {
  424. //do nothing
  425. }
  426. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  427. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  428. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  429. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  430. }
  431. else
  432. {
  433. cmd_stCmdIn.swSpdCmdRpm = 0;
  434. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  435. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  436. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  437. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  438. }
  439. /*=======================================================================
  440. Speed PI Controller
  441. =======================================================================*/
  442. asr_stSpdPIIn.swSpdRefPu = scm_swSpdRefPu; // Q15
  443. asr_stSpdPIIn.swSpdFdbPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  444. if(curSpeed_state.state != ClzLoop)
  445. {
  446. swIqLowerPu = flx_stCtrlOut.swIqLimPu;
  447. }
  448. else
  449. {
  450. swIqLowerPu = (SWORD)((flx_stCtrlOut.swIqLimPu < ABS(pwr_stPwrLimOut2.swIqLimPu)) ? flx_stCtrlOut.swIqLimPu : ABS(pwr_stPwrLimOut2.swIqLimPu));
  451. }
  452. if (scm_swRotateDir > 0)
  453. {
  454. asr_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  455. asr_stSpdPIIn.swIqMinPu = -swIqLowerPu;
  456. }
  457. else
  458. {
  459. asr_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  460. asr_stSpdPIIn.swIqMinPu = -swIqLowerPu;
  461. }
  462. asr_voSpdPI(&asr_stSpdPIIn, &asr_stSpdPICoef, &asr_stSpdPIOut);
  463. /* Torque observe */
  464. // if (scm_swRotateDir > 0)
  465. // {
  466. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  467. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  468. // }
  469. // else
  470. // {
  471. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  472. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  473. // }
  474. // torqobs_stCalIn.swIqfbkPu = scm_swIqFdbLpfPu;
  475. // torqobs_stCalIn.swSpdPu = spi_stResolverOut.swSpdFbkPu;
  476. // torqobs_voCal(&torqobs_stCalIn, &torqobs_stCoef, &torqobs_stCalOut);
  477. // mth_voLPFilter(torqobs_stCalOut.swIqLoadPu, &scm_stIqLoadLpf);
  478. // swCurRefrompu = asr_stSpdPIOut.swIqRefPu - scm_stIqLoadLpf.slY.sw.hi;
  479. // if (swCurRefrompu > swIqLowerPu)
  480. // {
  481. // swCurRefrompu = swIqLowerPu;
  482. // }
  483. // else if (swCurRefrompu < -swIqLowerPu)
  484. // {
  485. // swCurRefrompu = -swIqLowerPu;
  486. // }
  487. // else
  488. // {}
  489. swCurRefrompu = asr_stSpdPIOut.swIqRefPu;
  490. curSpeed_state.Tbs_hook();
  491. }
  492. void scm_voTorqCtrMdTbs(void)
  493. {
  494. SWORD swIqLowerPu;
  495. /* Speed feedback LPF */
  496. if(cp_stFlg.ThetaGetModelSelect == ANG_OBSERVER)
  497. {
  498. mth_voLPFilter(obs_stObsOutPu.swElecFreqPu, &scm_stSpdFbkLpf);
  499. }
  500. else if(cp_stFlg.ThetaGetModelSelect == ANG_RESOLVER)
  501. {
  502. mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stSpdFbkLpf);
  503. }
  504. else if(cp_stFlg.ThetaGetModelSelect == ANG_SWITCHHALL)
  505. {
  506. scm_stSpdFbkLpf.slY.sw.hi = switchhall_stOut.swLowSpdLpfPu;
  507. }
  508. else
  509. {
  510. //do nothing
  511. }
  512. /* Speed feedback Absolute */
  513. scm_uwSpdFbkLpfAbsPu = (UWORD)ABS(scm_stSpdFbkLpf.slY.sw.hi);
  514. /* Current limit value */
  515. swIqLowerPu = (SWORD)((flx_stCtrlOut.swIqLimPu < ABS(pwr_stPwrLimOut2.swIqLimPu)) ? flx_stCtrlOut.swIqLimPu : ABS(pwr_stPwrLimOut2.swIqLimPu));
  516. /* Torque observer */
  517. // if (scm_swRotateDir > 0)
  518. // {
  519. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  520. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  521. // }
  522. // else
  523. // {
  524. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  525. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  526. // }
  527. // torqobs_stCalIn.swIqfbkPu = scm_swIqFdbLpfPu;
  528. // torqobs_stCalIn.swSpdPu = spi_stResolverOut.swSpdFbkPu;
  529. // torqobs_voCal(&torqobs_stCalIn, &torqobs_stCoef, &torqobs_stCalOut);
  530. // mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  531. // mth_voLPFilter((torqobs_stCalOut.swIqLoadPu + scm_swIqFdbLpfPu), &scm_stIqLoadLpf);
  532. /* Speed fluctuation compensation */
  533. mth_voLPFilterCoef(1000000 / 50, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  534. mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stIqLoadLpf);
  535. scm_swSpdFbkCompPu = spi_stResolverOut.swSpdFbkPu - scm_stIqLoadLpf.slY.sw.hi;
  536. swTmpSpdRate = (SLONG)scm_swSpdFbkCompPu * ass_stParaSet.uwSpeedAssistSpdRpm >> 11;
  537. mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &swTmpSpdRateLpf.uwKx);
  538. mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  539. // swTmpSpdRateLpf.slY.sw.hi = swTmpSpdRate;
  540. /* Torque Calculate */
  541. // swTmpSpdRate = spi_stResolverOut.swSpdFbkPu - swTmpSpdFbkPuZ1; //Q15
  542. // mth_voLPFilterCoef(1000000 / 30, FTBS_HZ, &swTmpSpdRateLpf.uwKx); //30Hz,TBS
  543. // mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  544. // swTmpSpdFbkPuZ1 = spi_stResolverOut.swSpdFbkPu;
  545. // scm_swSpdFbkCompPu = scm_stSpdFbkLpf.slY.sw.hi + (SLONG)swTmpSpdRateLpf.slY.sw.hi * FTBS_HZ / 30; //30Hz,TBS
  546. // mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  547. // mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stIqLoadLpf);
  548. // scm_swSpdFbkCompPu = spi_stResolverOut.swSpdFbkPu - scm_stIqLoadLpf.slY.sw.hi;
  549. //
  550. // swTmpSpdRate = (SLONG)scm_swSpdFbkCompPu * ass_stParaSet.uwSpeedAssistSpdRpm >> 11; // 系数 = J/Tlpf/Pesi
  551. //
  552. //// mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &swTmpSpdRateLpf.uwKx);
  553. //// mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  554. // swTmpSpdRateLpf.slY.sw.hi = swTmpSpdRate;
  555. //
  556. /* Iqref Compensation */
  557. if(((uart_swTorqRefNm < -200)||(uart_swTorqRefNm > 200)) && (Ass_FSM !=Spd2Torq) && (Ass_FSM !=SpeedAssit))
  558. {
  559. /* Torque Calculate */
  560. //swTestIqref = uart_swTorqRefNm - (((SLONG)swTmpSpdRateLpf.slY.sw.hi * cof_uwJmPu * 2 << 11) / cof_uwFluxPu); //Q15+Q0+Q11-Q12=Q14
  561. /* Speed fluctuation compensation*/
  562. swTestIqref = uart_swTorqRefNm - swTmpSpdRateLpf.slY.sw.hi;
  563. /* Torgque observer */
  564. //swTestIqref = uart_swTorqRefNm - scm_stIqLoadLpf.slY.sw.hi;
  565. }
  566. else
  567. {
  568. swTestIqref = uart_swTorqRefNm;
  569. }
  570. /* Current limit */
  571. if (swTestIqref > swIqLowerPu)
  572. {
  573. swTestIqref = swIqLowerPu;
  574. }
  575. else if (swTestIqref < -swIqLowerPu)
  576. {
  577. swTestIqref = -swIqLowerPu;
  578. }
  579. else
  580. {
  581. //do nothing
  582. }
  583. swCurRefrompu = swTestIqref;
  584. /* 3rd FSM*/
  585. curSpeed_state.Tbs_hook();
  586. }
  587. /***************************************************************
  588. Function: scm_voSpdCtrMdUpTbc;
  589. Description: Speed control mode TBC scheduler
  590. Call by: tbc_voIsr();
  591. Input Variables: N/A
  592. Output/Return Variables: N/A
  593. Subroutine Call: ...;
  594. Reference: N/A
  595. ****************************************************************/
  596. void scm_voSpdCtrMdUpTbc(void)
  597. {
  598. /*=======================================================================
  599. Max voltage of current PI out
  600. =======================================================================*/
  601. scm_swVsLimPu = (SWORD)((SWORD)adc_stUpOut.uwVdcLpfPu * (SLONG)scm_uwAcrLimCof >> 15); // Q14+Q15-Q15=Q14
  602. scm_swVsDcpLimPu = (SWORD)((SWORD)adc_stUpOut.uwVdcLpfPu * (SLONG)scm_uwUdcpLimCof >> 15); // Q14+Q15-Q15=Q14
  603. /*=======================================================================
  604. Voltage get
  605. =======================================================================*/
  606. /* Get Ualpha & Ubeta from command voltage */
  607. scm_swUalphaPu = pwm_stGenOut.swUalphaPu - scm_swUalphaCompPu; // Q14
  608. scm_swUbetaPu = pwm_stGenOut.swUbetaPu - scm_swUbetaCompPu; // Q14
  609. /*=======================================================================
  610. Startup control FSM
  611. =======================================================================*/
  612. scm_voSpdCtrMdFSM();
  613. curSpeed_state.Tbcup_hook();
  614. }
  615. /***************************************************************
  616. Function: scm_voSpdCtrMdTbc;
  617. Description: Speed control mode TBC scheduler
  618. Call by: tbc_voIsr();
  619. Input Variables: N/A
  620. Output/Return Variables: N/A
  621. Subroutine Call: ...;
  622. Reference: N/A
  623. ****************************************************************/
  624. void scm_voSpdCtrMdDownTbc(void)
  625. {
  626. /*=======================================================================
  627. Clark transformation for phase current
  628. =======================================================================*/
  629. crd_stClarkIn.swAPu = adc_stDownOut.swIaPu; // Q14
  630. crd_stClarkIn.swBPu = adc_stDownOut.swIbPu; // Q14
  631. crd_stClarkIn.swCPu = adc_stDownOut.swIcPu; // Q14
  632. crd_voClark(&crd_stClarkIn, &crd_stCurClarkOut);
  633. /*=======================================================================
  634. Code Of spdFSM
  635. =======================================================================*/
  636. curSpeed_state.Tbcdown_hook();
  637. /*=======================================================================
  638. Current loop control
  639. =======================================================================*/
  640. /* Get Id & Iq for current PI control */
  641. /*=======================================================================
  642. Park transformation for current
  643. =======================================================================*/
  644. crd_stParkIn.swAlphaPu = crd_stCurClarkOut.swAlphaPu; // Q14
  645. crd_stParkIn.swBetaPu = crd_stCurClarkOut.swBetaPu; // Q14
  646. crd_stParkIn.uwThetaPu = scm_uwAngParkPu; // Q15
  647. crd_voPark(&crd_stParkIn, &crd_stCurParkOut);
  648. /*=======================================================================
  649. Current feedback LPF
  650. =======================================================================*/
  651. mth_voLPFilter(crd_stCurParkOut.swDPu, &scm_stIdFbkLpf);
  652. mth_voLPFilter(crd_stCurParkOut.swQPu, &scm_stIqFbkLpf);
  653. scm_swIdFdbLpfPu = scm_stIdFbkLpf.slY.sw.hi;
  654. scm_swIqFdbLpfPu = scm_stIqFbkLpf.slY.sw.hi;
  655. /*=======================================================================
  656. Calculate input power of motor
  657. =======================================================================*/
  658. scm_swMotorPwrInPu = (SWORD)(((SLONG)Test_U_out.swDPu * scm_swIdFdbLpfPu + (SLONG)Test_U_out.swQPu * scm_swIqFdbLpfPu) >> 13); // Q14+Q14-Q13=Q15
  659. mth_voLPFilter(scm_swMotorPwrInPu, &scm_stMotoPwrInLpf);
  660. scm_swMotorPwrInLpfWt = (SWORD)(scm_stMotoPwrInLpf.slY.sw.hi * (SLONG)cof_uwPbWt >> 15); // unit: 0.1w
  661. /*=======================================================================
  662. Id current PI control
  663. =======================================================================*/
  664. //DCPswitch = 0; //0 with forwardFeedBack 1 without forwardFeedBack
  665. acr_stCurIdPIIn.swCurRefPu = scm_swIdRefPu; // Q14
  666. acr_stCurIdPIIn.swCurFdbPu = scm_swIdFdbLpfPu;
  667. if (DCPswitch == 1)
  668. {
  669. acr_stCurIdPIIn.swUmaxPu = scm_swVsDcpLimPu; // Q14
  670. acr_stCurIdPIIn.swUminPu = -scm_swVsDcpLimPu; // Q14
  671. }
  672. else if (DCPswitch == 0)
  673. {
  674. acr_stCurIdPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  675. acr_stCurIdPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  676. // acr_stCurIdPIIn.swUmaxPu = scm_swVsLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  677. // acr_stCurIdPIIn.swUminPu = -scm_swVsLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  678. }
  679. else
  680. {
  681. //do nothing
  682. }
  683. acr_voCurPI(&acr_stCurIdPIIn, &acr_stCurIdPICoef, &acr_stCurIdPIOut);
  684. /*=======================================================================
  685. Iq current PI control
  686. =======================================================================*/
  687. acr_stCurIqPIIn.swCurRefPu = scm_swIqRefPu; // Q14
  688. acr_stCurIqPIIn.swCurFdbPu = scm_swIqFdbLpfPu;
  689. if (DCPswitch == 1)
  690. {
  691. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu; // Q14
  692. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu; // Q14
  693. }
  694. else if (DCPswitch == 0)
  695. {
  696. // if(FSM2nd_Run_state.state == Assistance)
  697. // {
  698. // acr_stCurIqPIIn.swUmaxPu = ass_stCalOut.swVoltLimitPu - acr_stUdqDcpOut.swUqPu; // Q14
  699. // acr_stCurIqPIIn.swUminPu = -ass_stCalOut.swVoltLimitPu - acr_stUdqDcpOut.swUqPu; // Q14
  700. // }
  701. // else
  702. {
  703. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  704. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  705. }
  706. // scm_swUqLimPu = mth_slSqrt(((SLONG)scm_swVsLimPu * scm_swVsLimPu) - (SLONG)(acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu) * (acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu));//Q14
  707. // acr_stCurIqPIIn.swUmaxPu = scm_swUqLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  708. // acr_stCurIqPIIn.swUminPu = -scm_swUqLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  709. }
  710. else
  711. {
  712. //do nothing
  713. }
  714. acr_voCurPI(&acr_stCurIqPIIn, &acr_stCurIqPICoef, &acr_stCurIqPIOut);
  715. if (DCPswitch == 1)
  716. {
  717. scm_swUqRefPu = acr_stCurIqPIOut.swURefPu; // Q14
  718. scm_swUdRefPu = acr_stCurIdPIOut.swURefPu; // Q14
  719. }
  720. else if (DCPswitch == 0)
  721. {
  722. scm_swUqRefPu = acr_stCurIqPIOut.swURefPu + acr_stUdqDcpOut.swUqPu; // Q14
  723. scm_swUdRefPu = acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu; // Q14
  724. }
  725. else
  726. {
  727. //do nothing
  728. }
  729. /*=======================================================================
  730. IPark transformation for current
  731. =======================================================================*/
  732. crd_stIParkIn.swDPu = scm_swUdRefPu;
  733. crd_stIParkIn.swQPu = scm_swUqRefPu;
  734. crd_stIParkIn.uwThetaPu = scm_uwAngIParkPu;
  735. crd_voIPark(&crd_stIParkIn, &crd_stVltIParkOut);
  736. /*=======================================================================
  737. Deadband compensation
  738. =======================================================================*/
  739. #if (0)
  740. dbc_stDbCompIn.swIaPu = adc_stDownOut.swIaPu; // Q14
  741. dbc_stDbCompIn.swIbPu = adc_stDownOut.swIbPu; // Q14
  742. dbc_stDbCompIn.swIcPu = adc_stDownOut.swIcPu; // Q14
  743. dbc_stDbCompIn.uwVdcPu = adc_stUpOut.uwVdcLpfPu; // Q14
  744. dbc_stDbCompIn.swWsPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  745. // dbc_stDbCompCoef.uwNegWinVoltDuty = mn_uwNegWinVoltDuty;
  746. // dbc_stDbCompCoef.uwPosLostVoltDuty = mn_uwPosLostVoltDuty;
  747. dbc_voDBComp(&dbc_stDbCompIn, &dbc_stDbCompCoef, &dbc_stDbCompOut);
  748. #endif
  749. scm_swUalphaRefPu = crd_stVltIParkOut.swAlphaPu + dbc_stDbCompOut.swUalphaCompPu; // Q14
  750. scm_swUbetaRefPu = crd_stVltIParkOut.swBetaPu + dbc_stDbCompOut.swUbetaCompPu; // Q14
  751. scm_swUalphaCompPu = dbc_stDbCompOut.swUalphaCompPu; // Q14
  752. scm_swUbetaCompPu = dbc_stDbCompOut.swUbetaCompPu; // Q14
  753. /*=======================================================================
  754. PWM generate
  755. =======================================================================*/
  756. if(cp_stFlg.RunModelSelect == VFContorl)
  757. {
  758. SWORD swVFVolAmp = 0;
  759. swVFVolAmp = (SWORD)(((SLONG)cp_stControlPara.swDragVolAp << 14) / VBASE);
  760. if(cp_stFlg.RotateDirectionSelect == ForwardRotate)
  761. {
  762. crd_stIParkIn.swDPu = 0;
  763. crd_stIParkIn.swQPu = swVFVolAmp;
  764. }
  765. else if(cp_stFlg.RotateDirectionSelect == BackwardRotate)
  766. {
  767. crd_stIParkIn.swDPu = 0;
  768. crd_stIParkIn.swQPu = -swVFVolAmp;
  769. }
  770. else
  771. {
  772. //do nothing
  773. }
  774. crd_stIParkIn.uwThetaPu = scm_uwAngIParkPu;//scm_uwAngIParkPu;
  775. crd_voIPark(&crd_stIParkIn, &crd_stVltIParkOut);
  776. scm_swUalphaRefPu = crd_stVltIParkOut.swAlphaPu ;
  777. scm_swUbetaRefPu = crd_stVltIParkOut.swBetaPu;
  778. }
  779. pwm_stGenIn.swUalphaPu = scm_swUalphaRefPu; // Q14
  780. pwm_stGenIn.swUbetaPu = scm_swUbetaRefPu; // Q14
  781. pwm_stGenIn.uwVdcPu = adc_stUpOut.uwVdcLpfPu; // Q14
  782. pwm_voGen(&pwm_stGenIn, &pwm_stGenCoef, &pwm_stGenOut);
  783. iPwm_SetCompareGroupValues16(0, pwm_stGenOut.uwNewTIM1COMPR);
  784. ULONG samplingTick[2];
  785. samplingTick[0]=pwm_stGenOut.uwSigRTrig;
  786. samplingTick[1]=pwm_stGenOut.uwRdsonTrig;
  787. iPwm_SyncMultiSamplingCountUp(0, &samplingTick[0], 2);
  788. Test_U_in.swAlphaPu = pwm_stGenOut.swUalphaPu - scm_swUalphaCompPu; // Q14
  789. Test_U_in.swBetaPu = pwm_stGenOut.swUbetaPu - scm_swUbetaCompPu; // Q14
  790. Test_U_in.uwThetaPu = scm_uwAngIParkPu; // Q15
  791. crd_voPark(&Test_U_in, &Test_U_out);
  792. }
  793. /*************************************************************************
  794. Local Functions (N/A)
  795. *************************************************************************/
  796. /*************************************************************************
  797. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  798. All rights reserved.
  799. *************************************************************************/
  800. #ifdef _SPDCTRMODE_C_
  801. #undef _SPDCTRMODE_C_
  802. #endif
  803. /*************************************************************************
  804. End of this File (EOF)!
  805. Do not put anything after this part!
  806. *************************************************************************/