AssistCurve.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. #include "bikegearsensor.h"
  24. #include "giant_can.h"
  25. /******************************
  26. *
  27. * Parameter
  28. *
  29. ******************************/
  30. ASS_FSM_STATUS Ass_FSM;
  31. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  32. ASS_PER_COEF ass_stCalCoef;
  33. ASS_PER_OUT ass_stCalOut;
  34. ASS_PARA_CONFIGURE ass_stParaCong;
  35. ASS_PARA_SET ass_stParaSet;
  36. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  37. ASS_CURLIM_OUT ass_stCurLimOut;
  38. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  39. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  40. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  41. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  42. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  43. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  44. ASS_TORQ_PI_IN ass_stTorqPIIn;
  45. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  46. SWORD ass_swTorqMafBuf[64];
  47. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  48. SWORD ass_swUqLimMafBuf[64];
  49. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  50. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  51. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  52. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  53. static SWORD ass_pvt_swVoltCnt=0;
  54. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  55. static UWORD AssCnt1ms;
  56. static UWORD ass_pvt_uwSmoothFlg = 0;
  57. /******************************
  58. *
  59. * Function
  60. *
  61. ******************************/
  62. /**
  63. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  64. *
  65. * @param coef polynomial coefficient a, b, c, d
  66. * @param Value polynomial input value X
  67. * @param Qnum polynomial input Q type
  68. * @return UWORD polynomial output Y
  69. */
  70. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  71. {
  72. SLONG out;
  73. SLONG temp_a, temp_b, temp_c;
  74. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  75. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  76. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  77. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  78. out = temp_a + temp_b + temp_c + coef->d;
  79. out = (SLONG)out;
  80. return out;
  81. }
  82. /**
  83. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  84. *
  85. * @param coef original point coefficient z, h, k
  86. * @return POLY_COEF a, b, c, d
  87. */
  88. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  89. //{
  90. // POLY_COEF out;
  91. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  92. // out.a = (SQWORD)0; // Q12
  93. // out.b = (SQWORD)coef->z; // Q12
  94. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  95. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  96. // return out;
  97. //}
  98. /**
  99. * @brief Torque to Current when Id = 0;
  100. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  101. * @param coef polynomial coefficient a, b, c, d
  102. * @param Value polynomial input value X
  103. * @param Qnum polynomial input Q type
  104. * @return UWORD polynomial output Y
  105. */
  106. static SWORD ass_swTorq2CurPu(SWORD Tor)
  107. {
  108. SWORD swCurrentPu;
  109. SWORD swMotorTorqueNotPu;
  110. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  111. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  112. return swCurrentPu;
  113. }
  114. /**
  115. * @brief
  116. *
  117. * @param
  118. * @return
  119. */
  120. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  121. {
  122. UWORD TempAssit;
  123. UWORD TempGear, gear;
  124. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  125. // {
  126. // TempAssit = ass_stParaCong.uwAssistSelect1;
  127. // }
  128. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  129. // {
  130. // TempAssit = ass_stParaCong.uwAssistSelect2;
  131. // }
  132. // else
  133. // {
  134. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  135. // }
  136. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  137. {
  138. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  139. }
  140. else if (ass_stParaCong.uwStartMode == 2)
  141. {
  142. TempAssit = ass_stParaCong.uwAssistSelect1;
  143. }
  144. else if (ass_stParaCong.uwStartMode == 3)
  145. {
  146. TempAssit = ass_stParaCong.uwAssistSelect2;
  147. }
  148. else
  149. {
  150. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  151. }
  152. SLONG slTorqGainSum =0;
  153. for(UWORD i = 0; i < 4; i++)
  154. {
  155. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  156. }
  157. if(slTorqGainSum == 0)
  158. {
  159. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  160. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  161. UWORD a ;
  162. a =sizeof( slTorqAssGain);
  163. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  164. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  165. }
  166. for (gear = 0; gear < 5; gear++)
  167. {
  168. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  169. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  170. }
  171. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  172. }
  173. /**
  174. * @brief Para from EE Init
  175. *
  176. * @param void
  177. * @return void
  178. */
  179. void ass_voAssitEEInit(void)
  180. {
  181. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  182. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  183. ass_stParaCong.uwMechRationMotor = 35; // Q0
  184. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  185. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_WALK_MAX;
  186. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  187. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  188. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  189. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  190. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_PARA;
  191. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  192. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  193. ass_stParaCong.uwAutoPowerOffTime = BIKE_POWER_PARA;
  194. ass_stParaCong.uwThrottleSmooth = BIKE_THROTTLE_SMOOTH;
  195. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  196. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  197. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  198. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  199. ass_stParaSet.uwStartUpGainStep = 25;
  200. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  201. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  202. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  203. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  204. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  205. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  206. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  207. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  208. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  209. ass_stParaSet.uwCadenceAssAjstGain = 4096; // Q12 percentage
  210. ass_stParaSet.uwAsssistSelectNum = 1;
  211. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  212. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  213. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  214. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  215. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  216. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  217. /* 函数私有变量初始化 */
  218. ass_pvt_swVoltCnt = 0;
  219. ass_pvt_uwTorqAccCnt = 0;
  220. ass_pvt_uwTorqDecCnt = 0;
  221. ass_pvt_uwSpd2TorqCnt = 0;
  222. ass_pvt_uwSmoothFlg = 0;
  223. AssCnt1ms = 0;
  224. }
  225. /**
  226. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  227. *
  228. * @param coef polynomial coefficient a, b, c, d
  229. * @param Value polynomial input value X
  230. * @param Qnum polynomial input Q type
  231. * @return UWORD polynomial output Y
  232. */
  233. LPF_OUT ass_pvt_stCurLpf;
  234. void ass_voAssitCoef(void)
  235. {
  236. /*状态机初始化*/
  237. Ass_FSM = StopAssit;
  238. /*电机限制初始化*/
  239. ass_stParaCong.uwCofCurMaxPu = ((ULONG)cp_stMotorPara.swIpeakMaxA << 14) / IBASE; // Q14
  240. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  241. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  242. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  243. /*速度环参数初始化*/
  244. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  245. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  246. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  247. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  248. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  249. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  250. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  251. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  252. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  253. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  254. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  255. /*电流限幅计算*/
  256. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  257. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 20;
  258. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  259. ass_stCurLimCalBMSCoef.swIqLImitK =
  260. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  261. /*助力曲线初始化*/
  262. ass_voAssistModeSelect();
  263. /*助力启动阈值初始化*/
  264. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  265. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  266. /*助力系数初始化*/
  267. ass_stCalCoef.StartFlag = 0;
  268. ass_stCalCoef.swSmoothGain = 0; // Q12
  269. ass_stCalCoef.swSmoothStopGain = 4096; //Q12
  270. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  271. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  272. /*设置启动到正常助力最少踏频数*/
  273. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  274. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  275. {
  276. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  277. }
  278. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  279. {
  280. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  281. }
  282. /*设置滑动平均滤波踏频数*/
  283. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  284. ass_stCalCoef.swCadanceGain = 0;
  285. ass_stCalCoef.uwSwitch1TorqThreshold = ass_stCalCoef.uwAssStopThreshold;//((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  286. ass_stCalCoef.uwSwitch2TorqThreshold = ass_stCalCoef.uwAssThreshold;//((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  287. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  288. /*初始化计数*/
  289. ass_stCalCoef.uwCadencePeriodCNT = 0;
  290. ass_stCalCoef.swCadanceCNT = 0;
  291. ass_stCalCoef.sw2StopCNT = 0;
  292. ass_stCalCoef.swAss2SpdCNT = 0;
  293. /*配置速度环参数*/
  294. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  295. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  296. ass_stCalCoef.swSpeedlimtrpm = -100;
  297. ass_stCalCoef.swBikeSpeedGain = 0;
  298. ass_stCalCoef.swMotorSpeedGain = Q12_1;
  299. /*设置电流限幅*/
  300. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  301. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  302. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  303. /*初始化标志*/
  304. ass_stCalCoef.blAssistflag = FALSE;
  305. ass_stCalOut.swTorAssistSum1 = 0;
  306. ass_stCalOut.swTorAssistSum2 = 0;
  307. ass_stCalOut.swTorAss2CurrentTemp = 0;
  308. ass_stCalOut.swCadAss2CurrentTemp = 0;
  309. ass_stCalOut.swTorAssistCurrentTemp = 0;
  310. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  311. ass_stCalOut.swTorAssistCurrent = 0;
  312. ass_stCalOut.swSpeedRef = 0;
  313. ass_stCalOut.swCadSpd2MotSpd = 0;
  314. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  315. ass_stCurLimCoef.uwLimitGain[1] = 400;
  316. ass_stCurLimCoef.uwLimitGain[2] = 682;
  317. ass_stCurLimCoef.uwLimitGain[3] = 910;
  318. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  319. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  320. ass_stCurLimCoef.uwSpdThresHold = 21845;
  321. /*设置车速限幅*/
  322. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  323. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  324. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  325. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  326. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  327. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  328. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  329. #if ((MOTOR_ID_SEL == MOTOR_WELLING_MTB_36V) || (MOTOR_ID_SEL == MOTOR_WELLING_MTB_48V))
  330. ass_stCurLimCoef.uwMotorSpdThresHold = SPD_RPM2PU(4290);//125Candance
  331. #elif ((MOTOR_ID_SEL == MOTOR_WELLING_CITY_36V) || (MOTOR_ID_SEL == MOTOR_WELLING_CITY_48V))
  332. ass_stCurLimCoef.uwMotorSpdThresHold = SPD_RPM2PU(3953);//115Candance
  333. #endif
  334. /*设置转矩电流标定系数*/
  335. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  336. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  337. ass_Tor2CurCalCoef.swCalCoefINV =
  338. (((SLONG)1 << 7) * 1000 * 1000) /
  339. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  340. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  341. ass_pvt_stCurLpf.slY.sl = 0;
  342. }
  343. /**
  344. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  345. *
  346. * @param coef polynomial coefficient a, b, c, d
  347. * @param Value polynomial input value X
  348. * @param Qnum polynomial input Q type
  349. * @return UWORD polynomial output Y
  350. */
  351. //void ass_voAssitTorqPIInit(void)
  352. //{
  353. // ass_stTorqPIOut.slIRefPu = 0;
  354. // ass_stTorqPIOut.swErrZ1Pu = 0;
  355. // ass_stTorqPIOut.swIRefPu = 0;
  356. //}
  357. //
  358. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  359. //{
  360. // SLONG slErrPu, slDeltaErrPu;
  361. // SLONG slIpPu, slIiPu;
  362. // SLONG slImaxPu, slIminPu;
  363. // SQWORD sqIRefPu, sqIpPu;
  364. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  365. //
  366. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  367. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  368. //
  369. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  370. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  371. //
  372. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  373. //
  374. // if (slErrPu > 32767)
  375. // {
  376. // slErrPu = 32767;
  377. // }
  378. // else if (slErrPu < -32768)
  379. // {
  380. // slErrPu = -32768;
  381. // }
  382. // else
  383. // {
  384. // /* Nothing */
  385. // }
  386. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  387. // slDeltaErrPu = slErrPu;
  388. // if (slDeltaErrPu > 32767)
  389. // {
  390. // slDeltaErrPu = 32767;
  391. // }
  392. // else if (slDeltaErrPu < -32768)
  393. // {
  394. // slDeltaErrPu = -32768;
  395. // }
  396. // else
  397. // {
  398. // /* Nothing */
  399. // }
  400. //
  401. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  402. // sqIpPu = (SQWORD)slIpPu << 3;
  403. //
  404. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  405. //
  406. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  407. // sqIRefPu = sqIpPu;
  408. //
  409. // if (sqIRefPu > slImaxPu)
  410. // {
  411. // out->slIRefPu = slImaxPu;
  412. // }
  413. // else if (sqIRefPu < slIminPu)
  414. // {
  415. // out->slIRefPu = slIminPu;
  416. // }
  417. // else
  418. // {
  419. // out->slIRefPu = sqIRefPu;
  420. // }
  421. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  422. // out->swErrZ1Pu = (SWORD)slErrPu;
  423. //}
  424. SWORD swPreCurrentPu;
  425. SWORD startonce = 0;
  426. UWORD kcoef =4096; //Q10
  427. UWORD uwTempStopCnt,StopCad,swMotorCadspd;
  428. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  429. {
  430. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  431. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  432. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  433. SWORD swTmpSpdtoTorqCur;
  434. SLONG slTmpSmoothCur;
  435. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  436. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  437. SWORD swCurSwitch = 0;
  438. SWORD swTmpVoltPu,swTmpVoltPu2;
  439. SLONG slSpdErr,slTmpVoltLim, slPreSpderror;
  440. SWORD swSpdKpPu = 500; //Q10
  441. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  442. SWORD swSpderror;
  443. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  444. /* Select Torq Growth Rate by Bike Gear */
  445. if (ass_stCalIn.uwGearSt == 1)
  446. {
  447. uwTorqAccStep = 50;
  448. }
  449. else if(ass_stCalIn.uwGearSt == 2)
  450. {
  451. uwTorqAccStep = 100;
  452. }
  453. else if(ass_stCalIn.uwGearSt == 3)
  454. {
  455. uwTorqAccStep = 120;
  456. }
  457. else if(ass_stCalIn.uwGearSt == 4)
  458. {
  459. uwTorqAccStep = 150;
  460. }
  461. else if(ass_stCalIn.uwGearSt == 5)
  462. {
  463. uwTorqAccStep = 150;
  464. }
  465. else
  466. {
  467. //do nothing
  468. }
  469. uwTorqDecStep = 80;
  470. AssCnt1ms ++;
  471. if(AssCnt1ms >= 10000)
  472. {
  473. AssCnt1ms = 0;
  474. }
  475. /* Select TorqRef: LPFTorq or MAFTorq */
  476. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  477. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  478. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  479. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  480. {
  481. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  482. }
  483. if(swTorqCmd < ass_stCalCoef.uwSwitch1TorqThreshold )
  484. {
  485. ass_stCalCoef.swCadanceGain = 0; //Q12
  486. }
  487. else if(swTorqCmd >= ass_stCalCoef.uwSwitch1TorqThreshold && swTorqCmd < ass_stCalCoef.uwSwitch2TorqThreshold)
  488. {
  489. ass_stCalCoef.swCadanceGain = (((ULONG)swTorqCmd - (ULONG)ass_stCalCoef.uwSwitch1TorqThreshold) * ass_stCalCoef.ulStartupDeltInv )>>16;
  490. }
  491. else
  492. {
  493. ass_stCalCoef.swCadanceGain = 4096; //Q12
  494. }
  495. /* Assist torque Cal using Assist Curve */
  496. //slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  497. slTeTorAssitTmpPu = (SLONG)giant_slPolynomial(&swTorqCmd);
  498. // if(ass_stCalIn.uwGearSt == 5)
  499. // {
  500. // slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  501. // }
  502. // else
  503. // {
  504. // slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  505. // }
  506. //
  507. // if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  508. // {
  509. // slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  510. // }
  511. // else
  512. // {
  513. // //do nothing;
  514. // }
  515. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  516. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  517. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  518. {
  519. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  520. }
  521. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  522. {
  523. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  524. }
  525. /* Select Assist Percent of Torq and Candence*/
  526. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  527. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  528. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  529. /* Candance Speed to Motor Speed*/
  530. ass_stCalOut.swCadSpd2MotSpd =
  531. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  532. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  533. /* Back EMF Cal */
  534. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  535. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  536. if (swTmpVoltPu < swTmpVoltPu2)
  537. {
  538. swTmpVoltPu = swTmpVoltPu2;
  539. }
  540. swMotorCadspd =(SWORD)((SLONG)(ass_stCalIn.uwSpdFbkAbsPu << 15)/(ass_stParaCong.uwMechRationMotor * ass_stParaCong.uwMotorPoles)>>10);
  541. swSpderror = swMotorCadspd - 300;//(SWORD)ass_CalIn.uwcadance;
  542. if(swSpderror < 200)
  543. {
  544. StopCad = 200;
  545. }
  546. else
  547. {
  548. StopCad = swSpderror;
  549. }
  550. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  551. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  552. swPreCurrentPu = (SWORD)(((SLONG)swPreCurrentPu * 990 )>>10);
  553. /* Assist FSM Control */
  554. switch (Ass_FSM)
  555. {
  556. case Prepare:
  557. UWORD tmpKp = 4000;//ass_ParaSet.uwStartUpCadNm ; //Q10
  558. slPreSpderror = (((SLONG)ass_stCalOut.swCadSpd2MotSpd * 800 )>>10) - ass_stCalIn.uwSpdFbkAbsPu; //Q15
  559. swPreCurrentPu = (slPreSpderror * tmpKp )>> 11; //Q14
  560. if(swPreCurrentPu < 0)
  561. {
  562. swPreCurrentPu = 0;
  563. }
  564. if((ass_stCalCoef.swAss2SpdCNT > 3000) || (ass_stCalIn.uwcadance == 0) || ((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold))) //踏频小于0.1 hz
  565. {
  566. Ass_FSM = StopAssit;
  567. ass_stCalCoef.swAss2SpdCNT = 0;
  568. }
  569. else
  570. {
  571. ass_stCalCoef.swAss2SpdCNT++;
  572. }
  573. if((ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 5) >> 3)) && (ass_stCalIn.uwcadance > 300)
  574. && ((BikeBrake_blGetstate() | bikegearsensor_blBikeGetState()) == FALSE))
  575. {
  576. Ass_FSM = Startup;
  577. ass_stCalCoef.swAss2SpdCNT=0;
  578. startonce = 0;
  579. }
  580. break;
  581. case Startup:
  582. /* 启动系数 */
  583. if(ass_pvt_uwSmoothFlg == 0)
  584. {
  585. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  586. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  587. {
  588. ass_pvt_uwSmoothFlg = 1;
  589. }
  590. }
  591. else if (ass_pvt_uwSmoothFlg == 1)
  592. {
  593. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  594. {
  595. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  596. }
  597. else
  598. {
  599. ass_stCalCoef.swSmoothGain = Q12_1;
  600. Ass_FSM = TorqueAssit;
  601. ass_stCalCoef.StartFlag=0;
  602. ass_pvt_uwSmoothFlg = 2;
  603. }
  604. }
  605. else
  606. {
  607. // do nothing
  608. }
  609. // swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  610. // slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  611. // if(slSpdErr < 0)
  612. // {
  613. // slSpdErr = 0;
  614. // }
  615. //// ass_stCalCoef.StartFlag = 1;
  616. // /* Open Voltage Limit according SpdErr*/
  617. // if(ass_stCalCoef.StartFlag == 0)
  618. // {
  619. // slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  620. // if(slTmpVoltLim > scm_swVsDcpLimPu)
  621. // {
  622. // slTmpVoltLim = scm_swVsDcpLimPu;
  623. // }
  624. // else if(slTmpVoltLim <= swTmpVoltPu)
  625. // {
  626. // slTmpVoltLim = swTmpVoltPu;
  627. // }
  628. // else
  629. // {
  630. // //do nothing
  631. // }
  632. // ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  633. //
  634. // /* 电机与踏频转速差小于阈值启动完成 */
  635. // if(slSpdErr <= 1000)
  636. // {
  637. // ass_stCalCoef.StartFlag = 1;
  638. // }
  639. // /* 根据电流环饱和情况判断启动完成 */
  640. //// if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  641. //// {
  642. //// ass_pvt_swVoltCnt++;
  643. //// }
  644. //// else
  645. //// {
  646. //// ass_pvt_swVoltCnt=0;
  647. //// }
  648. //// if(ass_pvt_swVoltCnt > 10)
  649. //// {
  650. //// ass_pvt_swVoltCnt=0;
  651. //// ass_stCalCoef.StartFlag = 1;
  652. //// }
  653. // }
  654. // else if(ass_stCalCoef.StartFlag ==1 )
  655. // {
  656. // if(0 == (AssCnt1ms%5))
  657. // {
  658. // ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  659. // if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  660. // {
  661. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  662. // }
  663. // }
  664. //
  665. // if(slSpdErr <= 100)
  666. // {
  667. // ass_pvt_swVoltCnt++;
  668. // }
  669. // else
  670. // {
  671. // ass_pvt_swVoltCnt--;
  672. // if(ass_pvt_swVoltCnt < 0)
  673. // {
  674. // ass_pvt_swVoltCnt = 0;
  675. // }
  676. // }
  677. // /* Switch to TorqueAssit FSM */
  678. // if(ass_pvt_swVoltCnt > 30)
  679. // {
  680. // Ass_FSM = TorqueAssit;
  681. // ass_stCalCoef.StartFlag=0;
  682. // ass_pvt_swVoltCnt=0;
  683. // }
  684. // }
  685. // else
  686. // {
  687. // //do nothing
  688. // }
  689. /* Switch to ReduceCurrent FSM */
  690. if(((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) || (ass_stCalIn.uwcadance == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  691. {
  692. /* When CandanceFreq=0 or BikeGear=0*/
  693. ass_stCalCoef.swAss2SpdCNT = 0;
  694. Ass_FSM = ReduceCurrent;
  695. }
  696. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  697. {
  698. ass_stCalCoef.swAss2SpdCNT++;
  699. uwTempStopCnt = ((ULONG)1*100 << 14)/ ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  700. if(uwTempStopCnt < 300)
  701. {
  702. uwTempStopCnt = 300;
  703. }
  704. else if(uwTempStopCnt > 2000)
  705. {
  706. uwTempStopCnt = 2000;
  707. }
  708. if(ass_stCalCoef.swAss2SpdCNT > uwTempStopCnt)
  709. {
  710. Ass_FSM = ReduceCurrent;
  711. ass_stCalCoef.swAss2SpdCNT = 0;
  712. ass_stCalCoef.StartFlag=0;
  713. }
  714. }
  715. else
  716. {
  717. ass_stCalCoef.swAss2SpdCNT = 0;
  718. }
  719. break;
  720. case TorqueAssit:
  721. /* 启动系数 */
  722. if(ass_pvt_uwSmoothFlg == 0)
  723. {
  724. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  725. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  726. {
  727. ass_pvt_uwSmoothFlg = 1;
  728. }
  729. }
  730. else if (ass_pvt_uwSmoothFlg == 1)
  731. {
  732. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  733. {
  734. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  735. }
  736. else
  737. {
  738. ass_stCalCoef.swSmoothGain = Q12_1;
  739. ass_pvt_uwSmoothFlg = 2;
  740. }
  741. }
  742. else
  743. {
  744. // do nothing
  745. }
  746. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  747. if(0 == (AssCnt1ms%5))
  748. {
  749. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  750. // {
  751. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  752. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  753. {
  754. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  755. }
  756. // }
  757. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  758. // {
  759. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  760. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm))
  761. //// {
  762. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm;
  763. //// }
  764. // }
  765. // else
  766. // {
  767. // }
  768. }
  769. /* TorqueRef Select Coef */
  770. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  771. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  772. {
  773. ass_stCalCoef.swTorqFilterGain = Q14_1;
  774. }
  775. /* Switch to ReduceCurrent FSM */
  776. if(((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) || (ass_stCalIn.uwcadance == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  777. {
  778. /* When CandanceFreq=0 or BikeGear=0*/
  779. ass_stCalOut.blTorqPIFlg = FALSE;
  780. ass_stCalCoef.swAss2SpdCNT = 0;
  781. Ass_FSM = ReduceCurrent;
  782. ass_stCalCoef.StartFlag = 0;
  783. }
  784. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  785. {
  786. ass_stCalCoef.swAss2SpdCNT++;
  787. uwTempStopCnt = ((ULONG)1*100 << 14)/ ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  788. if(uwTempStopCnt < 300)
  789. {
  790. uwTempStopCnt = 300;
  791. }
  792. else if(uwTempStopCnt > 2000)
  793. {
  794. uwTempStopCnt = 2000;
  795. }
  796. if(ass_stCalCoef.swAss2SpdCNT > uwTempStopCnt)
  797. {
  798. ass_stCalCoef.swAss2SpdCNT = 0;
  799. ass_stCalOut.blTorqPIFlg = FALSE;
  800. Ass_FSM = ReduceCurrent;
  801. ass_stCalCoef.StartFlag = 0;
  802. }
  803. }
  804. else
  805. {
  806. ass_stCalCoef.swAss2SpdCNT = 0;
  807. }
  808. break;
  809. case ReduceCurrent:
  810. /* Switch to StopAssit FSM */
  811. if(ass_stCalCoef.swSmoothStopGain <= 0)
  812. {
  813. ass_pvt_uwSmoothFlg = 0;
  814. ass_stCalCoef.swSmoothGain = 0;
  815. ass_stCalCoef.swSmoothStopGain = 0;
  816. ass_stCalCoef.swTorqFilterGain = 0;
  817. ass_stCalCoef.swCadanceGain = 0;
  818. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  819. Ass_FSM = StopAssit;
  820. }
  821. else
  822. {
  823. /* Reduce Curret Coef to Zero*/
  824. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  825. ass_stCalCoef.swSmoothGain -= ass_stCalCoef.uwStartUpGainAddStep;
  826. ass_stCalCoef.swSmoothStopGain -= ass_stCalCoef.uwStartUpGainAddStep;
  827. }
  828. /* Switch to Startup FSM */
  829. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  830. // {
  831. // Ass_FSM = Startup;
  832. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  833. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  834. // }
  835. break;
  836. case StopAssit:
  837. if(ass_stCalIn.uwcadance == 0)
  838. {
  839. startonce = 0;
  840. }
  841. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  842. /* Switch to Startup FSM */
  843. if ((BikeBrake_blGetstate() == FALSE) && (bikegearsensor_blBikeGetState() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  844. {
  845. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold))
  846. {
  847. if (ass_stCalIn.uwcadance > 0)
  848. {
  849. ass_stCalCoef.sw2StopCNT = 0;
  850. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  851. ass_pvt_stCurLpf.slY.sw.hi = 0;
  852. ass_stCalCoef.swSmoothStopGain = Q12_1;
  853. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  854. Ass_FSM = Startup;
  855. }
  856. }
  857. else
  858. {
  859. if (ass_stCalIn.uwcadance > 300)
  860. {
  861. ass_stCalCoef.sw2StopCNT = 0;
  862. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  863. ass_pvt_stCurLpf.slY.sw.hi = 0;
  864. ass_stCalCoef.swSmoothStopGain = Q12_1;
  865. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  866. Ass_FSM = Prepare;
  867. startonce = 1;
  868. }
  869. swPreCurrentPu = 0;
  870. }
  871. }
  872. /* Assit Exit */
  873. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  874. {
  875. ass_stCalCoef.sw2StopCNT++;
  876. }
  877. else
  878. {
  879. if (ass_stCalCoef.sw2StopCNT >= 1)
  880. {
  881. ass_stCalCoef.sw2StopCNT--;
  882. }
  883. }
  884. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE)|| (bikegearsensor_blBikeGetState() == TRUE))// 3s
  885. {
  886. ass_stCalCoef.sw2StopCNT = 0;
  887. ass_stCalCoef.blAssistflag = FALSE;
  888. }
  889. break;
  890. default:
  891. break;
  892. }
  893. /* Bikespeed Limit */
  894. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  895. {
  896. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  897. }
  898. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  899. {
  900. ass_stCalCoef.swBikeSpeedGain =
  901. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  902. uwTorqAccStep = 10;
  903. uwTorqDecStep = 10;
  904. }
  905. else
  906. {
  907. ass_stCalCoef.swBikeSpeedGain = 0;
  908. uwTorqAccStep = 10;
  909. uwTorqDecStep = 10;
  910. }
  911. if (ass_stCalIn.uwSpdFbkAbsPu <= ass_stCurLimCoef.uwMotorSpdThresHold)
  912. {
  913. ass_stCalCoef.swMotorSpeedGain = Q12_1; // Q12
  914. }
  915. else
  916. {
  917. #if MOTORSPEEDLIMIT_ENABLE
  918. ass_stCalCoef.swMotorSpeedGain = 0; // Q12
  919. #else
  920. ass_stCalCoef.swMotorSpeedGain = Q12_1; // Q12
  921. #endif
  922. }
  923. /* Assist Current Output in each FSM */
  924. switch (Ass_FSM)
  925. {
  926. case Prepare:
  927. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * swPreCurrentPu;
  928. break;
  929. case Startup:
  930. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  931. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  932. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  933. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  934. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  935. {
  936. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  937. }
  938. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  939. {
  940. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  941. }
  942. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  943. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  944. if(swPreCurrentPu < ass_stCalOut.swTorRefEnd)
  945. {
  946. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  947. }
  948. else
  949. {
  950. ass_stCalOut.swTorAssistCurrentTemp = (ULONG)ass_stCalIn.swDirection * swPreCurrentPu;
  951. }
  952. break;
  953. case TorqueAssit:
  954. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  955. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  956. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  957. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  958. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  959. {
  960. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  961. }
  962. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  963. {
  964. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  965. }
  966. #if CURSWITCH
  967. /* Ajust CurrentRef growth and decline rate */
  968. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  969. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  970. {
  971. ass_pvt_uwTorqAccCnt++;
  972. if(ass_pvt_uwTorqAccCnt >= 2)
  973. {
  974. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  975. ass_pvt_uwTorqAccCnt = 0;
  976. }
  977. }
  978. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  979. {
  980. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  981. {
  982. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  983. }
  984. // ass_pvt_uwTorqDecCnt++;
  985. // if(ass_pvt_uwTorqDecCnt >= 10)
  986. // {
  987. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  988. // ass_pvt_uwTorqDecCnt = 0;
  989. // }
  990. }
  991. else
  992. {
  993. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  994. }
  995. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd * ass_stCalCoef.swCadanceGain >> 12;
  996. /* Torq Clzloop Test */
  997. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  998. // {
  999. // if(!ass_stCalOut.blTorqPIFlg)
  1000. // {
  1001. // /* Initial value */
  1002. // ass_stTorqPIOut.slIRefPu = 0;
  1003. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  1004. // ass_stCalOut.blTorqPIFlg = TRUE;
  1005. // }
  1006. //
  1007. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  1008. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  1009. // ass_stTorqPIIn.swImaxPu = 0;
  1010. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  1011. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  1012. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  1013. // }
  1014. // else
  1015. // {
  1016. // ass_stCalOut.blTorqPIFlg = FALSE;
  1017. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  1018. // }
  1019. #else
  1020. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp)*ass_CalCoef.swCadanceGain >> 12;
  1021. #endif
  1022. break;
  1023. case ReduceCurrent:
  1024. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1025. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1026. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1027. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1028. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1029. {
  1030. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1031. }
  1032. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1033. {
  1034. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1035. }
  1036. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp)*ass_stCalCoef.swCadanceGain >> 12;
  1037. break;
  1038. case StopAssit:
  1039. ass_stCalOut.swTorAssistCurrentTemp = 0;
  1040. ass_stCalOut.swTorRefEnd = 0;
  1041. break;
  1042. default:
  1043. break;
  1044. }
  1045. /* Assist Iqref Output */
  1046. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  1047. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  1048. /* Bikespeed Limit Coef*/
  1049. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  1050. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swMotorSpeedGain >> 12);
  1051. ass_stCalOut.swAssitCurRef = (SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swSmoothStopGain >> 12;
  1052. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  1053. }
  1054. /**
  1055. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  1056. *
  1057. * @param coef polynomial coefficient a, b, c, d
  1058. * @param Value polynomial input value X
  1059. * @param Qnum polynomial input Q type
  1060. * @return UWORD polynomial output Y
  1061. */
  1062. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  1063. {
  1064. /* Limit the Output Current according to Bike Gear */
  1065. UWORD uwIqLimitTemp1;
  1066. if(gear > 5)
  1067. {
  1068. gear = 5;
  1069. }
  1070. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  1071. if(stGiantControlParams.MaximumTorque > 0)
  1072. {
  1073. uwIqLimitTemp1 = uwCurMaxPu * stGiantControlParams.MaximumTorque * 10 / 75;
  1074. }
  1075. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  1076. }
  1077. /**
  1078. * @brief Assist function
  1079. *
  1080. * @param coef polynomial coefficient a, b, c, d
  1081. * @param Value polynomial input value X
  1082. * @param Qnum polynomial input Q type
  1083. * @return UWORD polynomial output Y
  1084. */
  1085. void ass_voAssist(void)
  1086. {
  1087. #ifdef TEST
  1088. ass_stCalIn.uwtorquePer = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1089. ass_stCalIn.uwtorque = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1090. ass_stCalIn.uwtorquelpf = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1091. ass_stCalIn.uwcadancePer = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1092. ass_stCalIn.uwcadance = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1093. #endif
  1094. /* Start Assist Jduge */
  1095. if (((ass_stCalIn.uwcadance > 0) || (ass_stCalIn.uwtorquePer > 3000)) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  1096. {
  1097. ass_stCalCoef.blAssistflag = TRUE;
  1098. }
  1099. if (ass_stCalCoef.blAssistflag == TRUE)
  1100. {
  1101. /* Calculate Iqref Limit */
  1102. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  1103. ass_stCalCoef.uwCurrentMaxPu = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  1104. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  1105. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  1106. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  1107. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  1108. /* Calculate Assist Current, Iqref*/
  1109. AssitCuvApplPerVolt();
  1110. /* Iqref Limit */
  1111. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1112. {
  1113. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1114. }
  1115. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1116. {
  1117. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1118. }
  1119. else
  1120. {
  1121. //do nothing
  1122. }
  1123. }
  1124. else
  1125. {
  1126. ass_stCalOut.swAssitCurRef = 0;
  1127. }
  1128. }
  1129. /**
  1130. * @brief
  1131. *
  1132. * @param
  1133. * @return
  1134. */
  1135. void ass_voMoveAverageFilter(MAF_IN *in)
  1136. {
  1137. in->slSum -= in->swBuffer[in->uwIndex];
  1138. in->swBuffer[in->uwIndex] = in->swValue;
  1139. in->slSum += (SLONG)in->swValue;
  1140. if (!in->blSecFlag)
  1141. {
  1142. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1143. }
  1144. else
  1145. {
  1146. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1147. }
  1148. in->uwIndex++;
  1149. if (in->uwIndex >= in->uwLength)
  1150. {
  1151. in->blSecFlag = TRUE;
  1152. in->uwIndex = 0;
  1153. }
  1154. }
  1155. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1156. {
  1157. UWORD i;
  1158. in->uwIndex = 0;
  1159. in->slSum = 0;
  1160. in->blSecFlag = FALSE;
  1161. in->slAverValue = 0;
  1162. for (i = 0; i < in->uwLength; i++)
  1163. {
  1164. in->swBuffer[i] = 0;
  1165. }
  1166. }