spi_master.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: spi_master.c
  4. Partner Filename: spi_master.h
  5. Description: SPI master driver
  6. Complier: IAR Embedded Workbench for ARM 8.40.2
  7. CPU TYPE : GD32F30x
  8. *************************************************************************
  9. Copyright (c) 2022 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _SPI_MASTER_C_
  20. #define _SPI_MASTER_C_
  21. #endif
  22. /************************************************************************
  23. Included File
  24. *************************************************************************/
  25. #ifdef RUN_ARCH_SIM
  26. #include "spi_master.h"
  27. void spi_voResolverInit(void)
  28. {}
  29. void spi_voResolverCoef(SPI_RESOLVER_COEFIN *in, SPI_RESOLVER_COEF *out)
  30. {}
  31. void spi_voResolver(const SPI_RESOLVER_COEF *coef, SPI_RESOLVER_OUT *out)
  32. {}
  33. void spi_voResolverLock(void)
  34. {}
  35. void spi_voMagneticDetection(void)
  36. {}
  37. void spi_voReadWriteSeneorReg(void)
  38. {}
  39. #else
  40. #include "syspar.h"
  41. #include "user.h"
  42. #include "spi_master.h"
  43. #include "api.h"
  44. #include "gd32f30x_libopt.h"
  45. /*************************************************************************
  46. Exported Functions (N/A)
  47. *************************************************************************/
  48. /*************************************************************************
  49. Function:
  50. Description:
  51. Call by:
  52. Input Variables:
  53. Output/Return Variables:
  54. Subroutine Call:
  55. Reference:
  56. *************************************************************************/
  57. void spi_voResolverInit(void)
  58. {
  59. spi_stResolverOut.uwSpiThetaTmpZ1Pu = 0;
  60. spi_stResolverOut.swSpdLpfTmpPu = 0;
  61. spi_stResolverOut.swSpdLpfTmpZ1Pu = 0;
  62. spi_stResolverOut.uwSpiThetaPu = 0;
  63. spi_stResolverOut.uwSpiOrignData = 0;
  64. spi_stResolverOut.slPllThetaPu = 0;
  65. spi_stResolverOut.uwPllThetaPu = 0;
  66. spi_stResolverOut.slThetaErrPu = 0;
  67. spi_stResolverOut.slThetaErrZ1Pu = 0;
  68. spi_stResolverOut.slThetaDeltaErrPu = 0;
  69. spi_stResolverOut.swSpdFbkPu = 0;
  70. spi_stResolverOut.swPllSpdFbkPu = 0;
  71. spi_stResolverOut.slPllSpdFbkPu = 0;
  72. spi_stResolverOut.swSpdFbkLpfPu = 0;
  73. }
  74. /*************************************************************************
  75. Function:
  76. Description:
  77. Call by:
  78. Input Variables:
  79. Output/Return Variables:
  80. Subroutine Call:
  81. Reference:
  82. *************************************************************************/
  83. void spi_voResolverCoef(SPI_RESOLVER_COEFIN *in, SPI_RESOLVER_COEF *out)
  84. {
  85. UWORD uwMvcPu;
  86. ULONG ulDamper;
  87. UWORD uwDamper;
  88. if (in->uwFbHz < 10)
  89. {
  90. in->uwFbHz = 10;
  91. }
  92. else if (in->uwFbHz > 10000)
  93. {
  94. in->uwFbHz = 10000;
  95. }
  96. else
  97. {
  98. //do noting
  99. }
  100. if (in->uwFreqTbcHz < 10)
  101. {
  102. in->uwFreqTbcHz = 10;
  103. }
  104. if (in->uwSpdPllMcoef > 100)
  105. {
  106. in->uwSpdPllMcoef = 100;
  107. }
  108. out->uwCurTs = (UWORD)(((ULONG)in->uwFbHz << 10) / in->uwFreqTbcHz); // Q10, TBC time
  109. out->uwCurTsPu = (UWORD)(((ULONG)205887 * in->uwFbHz) / in->uwFreqTbcHz); // Q15, Q15(2pi)-->205887
  110. // /************************Speed PLL Coefficient*****************************/
  111. // out->uwSpdPllKpPu = in->uwSpdPllKpPu; //Q14
  112. // out->uwSpdPllKiPu = in->uwSpdPllKiPu; //Q14
  113. /************************Speed PLL Coefficient*****************************/
  114. uwMvcPu = (UWORD)(((ULONG)in->uwSpdPllWvcHz << 10) / in->uwFbHz); // Q10
  115. /* PLL Kp=M*w/sqrt(1+M^2) */
  116. ulDamper = (1 + in->uwSpdPllMcoef * in->uwSpdPllMcoef) << 8; // Q8
  117. uwDamper = (UWORD)mth_slSqrt((SLONG)ulDamper); // Q4
  118. if(uwDamper == 0)
  119. {
  120. uwDamper = 1;
  121. }
  122. out->uwSpdPllKpPu = (UWORD)(((ULONG)in->uwSpdPllMcoef * uwMvcPu / uwDamper) << 8); // Q10-Q4+Q8=Q14
  123. /* PLL Ki=w^2*T_cnt_ctrl/sqrt(1+M^2) */
  124. out->uwSpdPllKiPu = (UWORD)(((((ULONG)uwMvcPu * out->uwCurTsPu) / uwDamper) * uwMvcPu) >> 17); // Q10+Q15-Q4+Q10-Q17=Q14
  125. }
  126. /*************************************************************************
  127. Function:
  128. Description:
  129. Call by:
  130. Input Variables:
  131. Output/Return Variables:
  132. Subroutine Call:
  133. Reference:
  134. *************************************************************************/
  135. void spi_voMagneticDetection(void)
  136. {
  137. UWORD MGL, MGH;
  138. MGL = (UWORD)gpio_input_bit_get(GPIOB, GPIO_PIN_0);
  139. MGH = (UWORD)gpio_input_bit_get(GPIOB, GPIO_PIN_1);
  140. if ((MGL != 0) || (MGH != 0))
  141. {
  142. spi_stResolverOut.blMagRangeFltFlg = TRUE; // ! can not indicate magnet range fault
  143. }
  144. else
  145. {
  146. spi_stResolverOut.blMagRangeFltFlg = FALSE;
  147. }
  148. }
  149. /*************************************************************************
  150. Function:
  151. Description:
  152. Call by:
  153. Input Variables:
  154. Output/Return Variables:
  155. Subroutine Call:
  156. Reference:
  157. *************************************************************************/
  158. static SLONG spi_pvt_slSpdFbkLpfPu, spi_pvt_slSpdLpfTmpPu;
  159. void spi_voResolver(const SPI_RESOLVER_COEF *coef, SPI_RESOLVER_OUT *out)
  160. {
  161. UWORD uwSpiThetaTmpPu = 0, uwSpiThetaTmpPu2 = 0;
  162. SWORD swThetaErrPu = 0, swThetaCompPu = 0;
  163. SWORD swSpdTmpPu = 0, swSpdErrPu = 0;
  164. ULONG ulTmp1 = 0, ulTmp2 = 0;
  165. if (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) == SET)
  166. {
  167. uwSpiThetaTmpPu = (UWORD)(((ULONG)(spi_i2s_data_receive(SPI2))) >> 1);
  168. uwSpiThetaTmpPu &= 0x7FF8;
  169. uwSpiThetaTmpPu2 = uwSpiThetaTmpPu;
  170. swThetaCompPu = (SWORD)(((SLONG)out->swSpdLpfTmpPu * TLatency_TM) >> 10); // Q15, Consider decoding and SPI Latency:10us
  171. ulTmp1 = uwSpiThetaTmpPu + swThetaCompPu + out->swSpiThetaOffsetPu + cof_sl720DegreePu;
  172. uwSpiThetaTmpPu = (UWORD)(ulTmp1 & 0x7FFF);
  173. ulTmp2 = uwSpiThetaTmpPu2 + cof_sl720DegreePu;
  174. uwSpiThetaTmpPu2 = (UWORD)(ulTmp2 & 0x7FFF);
  175. out->uwSpiOrignData = uwSpiThetaTmpPu2;
  176. /* Calculate speed: Differentiation method */
  177. swThetaErrPu = (SWORD)uwSpiThetaTmpPu - (SWORD)out->uwSpiThetaTmpZ1Pu;
  178. out->uwSpiThetaTmpZ1Pu = uwSpiThetaTmpPu;
  179. if (swThetaErrPu <= -cof_sl180DegreePu)
  180. {
  181. swThetaErrPu = (SWORD)(swThetaErrPu + cof_sl360DegreePu);
  182. }
  183. if (swThetaErrPu >= cof_sl180DegreePu)
  184. {
  185. swThetaErrPu = (SWORD)(swThetaErrPu - cof_sl360DegreePu);
  186. }
  187. swSpdTmpPu = (SWORD)(((SLONG)swThetaErrPu * DIFF_COEF_TBC) >> 10); // Q15
  188. /* Judge the correctness of spi position*/
  189. spi_pvt_slSpdLpfTmpPu = (SLONG)0x0277 * (swSpdTmpPu - out->swSpdLpfTmpPu) + spi_pvt_slSpdLpfTmpPu; // 50Hz Q30
  190. out->swSpdLpfTmpPu = (SWORD)(spi_pvt_slSpdLpfTmpPu >> 15);
  191. swSpdErrPu = out->swSpdLpfTmpPu - out->swSpdLpfTmpZ1Pu;
  192. out->swSpdLpfTmpZ1Pu = out->swSpdLpfTmpPu;
  193. if ((swSpdErrPu < USER_MOTOR_1000RPM2PU) && (swSpdErrPu > -USER_MOTOR_1000RPM2PU))
  194. {
  195. out->uwSpiThetaPu = uwSpiThetaTmpPu;
  196. out->blSpiThetaFltFlg = FALSE;
  197. }
  198. else
  199. {
  200. out->blSpiThetaFltFlg = TRUE;
  201. }
  202. }
  203. else
  204. {
  205. out->blSpiThetaFltFlg = TRUE;
  206. }
  207. out->swSpdFbkPu = swSpdTmpPu;
  208. /*Calculate speed: PLL method*/
  209. SLONG slThetaErrPu,slThetaDeltaErrPu,slPllThetaPu;
  210. SLONG slKpTmpPu,slKitTmpPu,slPllSpdFbkPu;
  211. ULONG ulSpdPllKpPu,ulSpdPllKiPu;
  212. slThetaErrPu = (SLONG)out->uwSpiThetaPu - (out->uwPllThetaPu + (((SLONG)out->swPllSpdFbkPu * coef->uwCurTs) >> 10)); //Q15
  213. if (slThetaErrPu >= cof_sl180DegreePu)
  214. {
  215. slThetaErrPu-= cof_sl360DegreePu;
  216. }
  217. if(slThetaErrPu <= -cof_sl180DegreePu)
  218. {
  219. slThetaErrPu += cof_sl360DegreePu;
  220. }
  221. slThetaDeltaErrPu = slThetaErrPu - out->slThetaErrZ1Pu;
  222. out->slThetaErrZ1Pu = slThetaErrPu;
  223. /* Variable parameter PI,untested*/
  224. // if(out->swPllSpdFbkPu < cof_uw1000RpmPu - cof_uw200RpmPu)
  225. // {
  226. // ulSpdPllKpPu = coef->uwSpdPllKpPu;
  227. // ulSpdPllKiPu = coef->uwSpdPllKiPu;
  228. // }
  229. // else if((out->swPllSpdFbkPu > cof_uw1000RpmPu) && (out->swPllSpdFbkPu < cof_uw2000RpmPu - cof_uw200RpmPu))
  230. // {
  231. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 2;
  232. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 2 * 2;
  233. // }
  234. // else if((out->swPllSpdFbkPu > cof_uw2000RpmPu) && (out->swPllSpdFbkPu < cof_uw3000RpmPu - cof_uw200RpmPu))
  235. // {
  236. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 4;
  237. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 4 * 4;
  238. // }
  239. // else if((out->swPllSpdFbkPu > cof_uw3000RpmPu) && (out->swPllSpdFbkPu < cof_uw4000RpmPu - cof_uw200RpmPu))
  240. // {
  241. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 8;
  242. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 8 * 8;
  243. // }
  244. // else if (out->swPllSpdFbkPu > cof_uw4000RpmPu)
  245. // {
  246. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 16;
  247. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 16 * 16;
  248. // }
  249. ulSpdPllKpPu = coef->uwSpdPllKpPu;
  250. ulSpdPllKiPu = coef->uwSpdPllKiPu;
  251. slKpTmpPu = slThetaDeltaErrPu * (SLONG)ulSpdPllKpPu; //Q15+Q14=Q29
  252. slKitTmpPu = slThetaErrPu * (SLONG)ulSpdPllKiPu;
  253. slPllSpdFbkPu = slKpTmpPu + slKitTmpPu + out->slPllSpdFbkPu;
  254. if(slPllSpdFbkPu >= 0x20000000)
  255. {
  256. slPllSpdFbkPu = 0x20000000-1; //Q29
  257. }
  258. if(slPllSpdFbkPu <= -0x20000000)
  259. {
  260. slPllSpdFbkPu = -0x20000000; //Q29
  261. }
  262. out->slPllSpdFbkPu = slPllSpdFbkPu; //Q29
  263. out->swPllSpdFbkPu = (SWORD)(slPllSpdFbkPu >> 14); //Q15
  264. slPllThetaPu = out->slPllThetaPu + (((SLONG)out->swPllSpdFbkPu * coef->uwCurTs) << 4); //Q15+Q10+Q4=Q29
  265. if(slPllThetaPu >= 0x20000000)
  266. {
  267. slPllThetaPu -= 0x20000000;
  268. }
  269. if(slPllThetaPu < 0)
  270. {
  271. slPllThetaPu += 0x20000000;
  272. }
  273. out->slPllThetaPu = slPllThetaPu;
  274. out->uwPllThetaPu = (UWORD)((ULONG)slPllThetaPu >> 14); //Q15 = Q29 - Q14
  275. // spi_pvt_slSpdFbkLpfPu = (SLONG)0x00FF * (out->swPllSpdFbkPu - out->swSpdFbkLpfPu) + spi_pvt_slSpdFbkLpfPu; //20Hz Q30
  276. // out->swSpdFbkLpfPu = spi_pvt_slSpdFbkLpfPu >> 15;
  277. }
  278. /*************************************************************************
  279. Function:
  280. Description:
  281. Call by:
  282. Input Variables:
  283. Output/Return Variables:
  284. Subroutine Call:
  285. Reference:
  286. *************************************************************************/
  287. void spi_voResolverLock(void)
  288. {
  289. /* CS signal enable */
  290. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  291. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  292. {}
  293. spi_i2s_data_transmit(SPI2,0x0550);
  294. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  295. {}
  296. /* CS signal disable */
  297. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  298. }
  299. /*************************************************************************
  300. Function:
  301. Description:
  302. Call by:
  303. Input Variables:
  304. Output/Return Variables:
  305. Subroutine Call:
  306. Reference:
  307. *************************************************************************/
  308. void spi_voReadWriteSeneorReg(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  309. {
  310. UWORD uwReadBCTReg = 0, uwReadETXY = 0;
  311. UWORD uwWriteBCTReg = 0, uwWriteETXY = 0, uwWriteRD = 0;
  312. UWORD SPI_DelayCnt1 = 0, SPI_DelayCnt2 = 0;
  313. /* Read the BCT register value */
  314. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); /*!< CS signal enable,for data update */
  315. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  316. {}
  317. spi_i2s_data_transmit(SPI2, 0x4200); //comp value
  318. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  319. {}
  320. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  321. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  322. {}
  323. uwReadBCTReg = spi_i2s_data_receive(SPI2); /*!< Read the first time */
  324. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  325. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  326. {}
  327. spi_i2s_data_transmit(SPI2, 0x0000); /*!< Write the second time */
  328. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  329. {}
  330. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  331. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  332. {}
  333. uwReadBCTReg = spi_i2s_data_receive(SPI2); /*!< Read the BCT register value */
  334. /* Read the ETX ETY value */
  335. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  336. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  337. {}
  338. spi_i2s_data_transmit(SPI2, 0x4300); //comp direction
  339. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  340. {}
  341. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  342. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  343. {}
  344. uwReadETXY = spi_i2s_data_receive(SPI2); /*!< Read the first time */
  345. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  346. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  347. {}
  348. spi_i2s_data_transmit(SPI2, 0x0000); /*!< Write the second time */
  349. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  350. {}
  351. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  352. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  353. {}
  354. uwReadETXY = spi_i2s_data_receive(SPI2); /*!< Read the ETX ETY value */
  355. if (uwReadBCTReg == 0x3000 && uwReadETXY == 0x0100)
  356. {
  357. spi_blReadRegCorrectFlg = TRUE;
  358. }
  359. else
  360. {
  361. spi_blReadRegCorrectFlg = FALSE;
  362. }
  363. /* Write MA702 BCT, EXY, RD Register */
  364. if ((spi_blReadRegCorrectFlg == FALSE) && (spi_blWriteRegFinishFlg == FALSE))
  365. //if (spi_blWriteRegFinishFlg == FALSE)
  366. {
  367. /* Write and Read BCT value*/
  368. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel); // Data update
  369. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)// Discontinuous transmission, can not indicate send complete
  370. {}
  371. spi_i2s_data_transmit(SPI2, 0x8230); // LSB,BCT=48
  372. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  373. {}
  374. uwWriteBCTReg = spi_i2s_data_receive(SPI2);
  375. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  376. /* Delay at least 22ms */
  377. while (SPI_DelayCnt2 < 20)
  378. {
  379. SPI_DelayCnt1++;
  380. if (SPI_DelayCnt1 == 10000)
  381. {
  382. SPI_DelayCnt2++;
  383. SPI_DelayCnt1 = 0;
  384. }
  385. }
  386. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  387. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  388. {}
  389. spi_i2s_data_transmit(SPI2, 0x0000);
  390. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  391. {}
  392. uwWriteBCTReg = spi_i2s_data_receive(SPI2);
  393. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  394. /* Write and Read ETX or ETY */
  395. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  396. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  397. {}
  398. spi_i2s_data_transmit(SPI2, 0x8301);
  399. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  400. {}
  401. uwWriteETXY = spi_i2s_data_receive(SPI2);
  402. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  403. /* Delay at least 22ms */
  404. SPI_DelayCnt2 = 0;
  405. while (SPI_DelayCnt2 < 20)
  406. {
  407. SPI_DelayCnt1++;
  408. if (SPI_DelayCnt1 == 10000)
  409. {
  410. SPI_DelayCnt2++;
  411. SPI_DelayCnt1 = 0;
  412. }
  413. }
  414. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  415. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  416. {}
  417. spi_i2s_data_transmit(SPI2, 0x0000);
  418. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  419. {}
  420. uwWriteETXY = spi_i2s_data_receive(SPI2);
  421. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  422. /* Write and Read RD value*/
  423. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  424. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  425. {}
  426. spi_i2s_data_transmit(SPI2, 0x8980); // RD=1,Counterclockwise,8980; RD=0,Clockwise,8900
  427. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  428. {}
  429. uwWriteRD = spi_i2s_data_receive(SPI2);
  430. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  431. /* Delay at least 22ms */
  432. SPI_DelayCnt2 = 0;
  433. while (SPI_DelayCnt2 < 20)
  434. {
  435. SPI_DelayCnt1++;
  436. if (SPI_DelayCnt1 == 10000)
  437. {
  438. SPI_DelayCnt2++;
  439. SPI_DelayCnt1 = 0;
  440. }
  441. }
  442. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_LowLevel);
  443. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  444. {}
  445. spi_i2s_data_transmit(SPI2, 0x0000);
  446. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  447. {}
  448. uwWriteRD = spi_i2s_data_receive(SPI2);
  449. iGpio_Write(HW_GPIO_SPICS_PIN,ApiGpio_HighLevel);
  450. if (uwWriteBCTReg == 0x3000 && uwWriteETXY == 0x0100 && uwWriteRD == 0x8000) // MSB
  451. {
  452. spi_blWriteRegFinishFlg = TRUE; // Need stored in EEPROM
  453. }
  454. else
  455. {
  456. spi_blWriteRegFinishFlg = FALSE;
  457. }
  458. }
  459. }
  460. /*************************************************************************
  461. Local Functions (N/A)
  462. *************************************************************************/
  463. /*************************************************************************
  464. Copyright (c) 2022 Welling Motor Technology(Shanghai) Co. Ltd.
  465. All rights reserved.
  466. *************************************************************************/
  467. #ifdef _SPI_MASTER_C_
  468. #undef _SPI_MASTER_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  469. #endif
  470. #endif
  471. /*************************************************************************
  472. End of this File (EOF)!
  473. Do not put anything after this part!
  474. *************************************************************************/