AssistCurve.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. #include "bikegearsensor.h"
  24. #include "giant_can.h"
  25. /******************************
  26. *
  27. * Parameter
  28. *
  29. ******************************/
  30. ASS_FSM_STATUS Ass_FSM;
  31. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  32. ASS_PER_COEF ass_stCalCoef;
  33. ASS_PER_OUT ass_stCalOut;
  34. ASS_PARA_CONFIGURE ass_stParaCong;
  35. ASS_PARA_SET ass_stParaSet;
  36. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  37. ASS_CURLIM_OUT ass_stCurLimOut;
  38. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  39. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  40. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  41. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  42. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  43. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  44. ASS_TORQ_PI_IN ass_stTorqPIIn;
  45. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  46. SWORD ass_swTorqMafBuf[64];
  47. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  48. SWORD ass_swUqLimMafBuf[64];
  49. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  50. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  51. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  52. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  53. static SWORD ass_pvt_swVoltCnt=0;
  54. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  55. static UWORD AssCnt1ms;
  56. static UWORD ass_pvt_uwSmoothFlg = 0;
  57. /******************************
  58. *
  59. * Function
  60. *
  61. ******************************/
  62. /**
  63. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  64. *
  65. * @param coef polynomial coefficient a, b, c, d
  66. * @param Value polynomial input value X
  67. * @param Qnum polynomial input Q type
  68. * @return UWORD polynomial output Y
  69. */
  70. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  71. {
  72. SLONG out;
  73. SLONG temp_a, temp_b, temp_c;
  74. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  75. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  76. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  77. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  78. out = temp_a + temp_b + temp_c + coef->d;
  79. out = (SLONG)out;
  80. return out;
  81. }
  82. /**
  83. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  84. *
  85. * @param coef original point coefficient z, h, k
  86. * @return POLY_COEF a, b, c, d
  87. */
  88. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  89. //{
  90. // POLY_COEF out;
  91. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  92. // out.a = (SQWORD)0; // Q12
  93. // out.b = (SQWORD)coef->z; // Q12
  94. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  95. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  96. // return out;
  97. //}
  98. /**
  99. * @brief Torque to Current when Id = 0;
  100. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  101. * @param coef polynomial coefficient a, b, c, d
  102. * @param Value polynomial input value X
  103. * @param Qnum polynomial input Q type
  104. * @return UWORD polynomial output Y
  105. */
  106. static SWORD ass_swTorq2CurPu(SWORD Tor)
  107. {
  108. SWORD swCurrentPu;
  109. SWORD swMotorTorqueNotPu;
  110. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  111. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  112. return swCurrentPu;
  113. }
  114. /**
  115. * @brief
  116. *
  117. * @param
  118. * @return
  119. */
  120. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  121. {
  122. UWORD TempAssit;
  123. UWORD TempGear, gear;
  124. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  125. // {
  126. // TempAssit = ass_stParaCong.uwAssistSelect1;
  127. // }
  128. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  129. // {
  130. // TempAssit = ass_stParaCong.uwAssistSelect2;
  131. // }
  132. // else
  133. // {
  134. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  135. // }
  136. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  137. {
  138. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  139. }
  140. else if (ass_stParaCong.uwStartMode == 2)
  141. {
  142. TempAssit = ass_stParaCong.uwAssistSelect1;
  143. }
  144. else if (ass_stParaCong.uwStartMode == 3)
  145. {
  146. TempAssit = ass_stParaCong.uwAssistSelect2;
  147. }
  148. else
  149. {
  150. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  151. }
  152. SLONG slTorqGainSum =0;
  153. for(UWORD i = 0; i < 4; i++)
  154. {
  155. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  156. }
  157. if(slTorqGainSum == 0)
  158. {
  159. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  160. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  161. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  162. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  163. }
  164. for (gear = 0; gear < 5; gear++)
  165. {
  166. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  167. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  168. }
  169. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  170. }
  171. /**
  172. * @brief Para from EE Init
  173. *
  174. * @param void
  175. * @return void
  176. */
  177. void ass_voAssitEEInit(void)
  178. {
  179. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  180. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  181. ass_stParaCong.uwMechRationMotor = 35; // Q0
  182. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  183. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_WALK_MAX;
  184. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  185. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  186. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  187. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  188. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_PARA;
  189. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  190. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  191. ass_stParaCong.uwAutoPowerOffTime = BIKE_POWER_PARA;
  192. ass_stParaCong.uwThrottleSmooth = BIKE_THROTTLE_SMOOTH;
  193. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  194. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  195. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  196. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  197. ass_stParaSet.uwStartUpGainStep = 25;
  198. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  199. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  200. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  201. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  202. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  203. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  204. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  205. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  206. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  207. ass_stParaSet.uwCadenceAssAjstGain = 4096; // Q12 percentage
  208. ass_stParaSet.uwAsssistSelectNum = 1;
  209. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  210. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  211. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  212. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  213. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  214. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  215. /* 函数私有变量初始化 */
  216. ass_pvt_swVoltCnt = 0;
  217. ass_pvt_uwTorqAccCnt = 0;
  218. ass_pvt_uwTorqDecCnt = 0;
  219. ass_pvt_uwSpd2TorqCnt = 0;
  220. ass_pvt_uwSmoothFlg = 0;
  221. AssCnt1ms = 0;
  222. }
  223. /**
  224. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  225. *
  226. * @param coef polynomial coefficient a, b, c, d
  227. * @param Value polynomial input value X
  228. * @param Qnum polynomial input Q type
  229. * @return UWORD polynomial output Y
  230. */
  231. LPF_OUT ass_pvt_stCurLpf;
  232. void ass_voAssitCoef(void)
  233. {
  234. /*状态机初始化*/
  235. Ass_FSM = StopAssit;
  236. /*电机限制初始化*/
  237. ass_stParaCong.uwCofCurMaxPu = ((ULONG)cp_stMotorPara.swIpeakMaxA << 14) / IBASE; // Q14
  238. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  239. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  240. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  241. /*速度环参数初始化*/
  242. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  243. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  244. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  245. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  246. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  247. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  248. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  249. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  250. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  251. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  252. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  253. /*电流限幅计算*/
  254. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  255. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 20;
  256. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  257. ass_stCurLimCalBMSCoef.swIqLImitK =
  258. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  259. /*助力曲线初始化*/
  260. ass_voAssistModeSelect();
  261. /*助力启动阈值初始化*/
  262. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  263. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  264. /*助力系数初始化*/
  265. ass_stCalCoef.StartFlag = 0;
  266. ass_stCalCoef.swSmoothGain = 0; // Q12
  267. ass_stCalCoef.swSmoothStopGain = 4096; //Q12
  268. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  269. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  270. /*设置启动到正常助力最少踏频数*/
  271. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  272. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  273. {
  274. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  275. }
  276. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  277. {
  278. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  279. }
  280. /*设置滑动平均滤波踏频数*/
  281. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  282. ass_stCalCoef.swCadanceGain = 0;
  283. ass_stCalCoef.uwSwitch1TorqThreshold = ass_stCalCoef.uwAssStopThreshold;//((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  284. ass_stCalCoef.uwSwitch2TorqThreshold = ass_stCalCoef.uwAssThreshold;//((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  285. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  286. /*初始化计数*/
  287. ass_stCalCoef.uwCadencePeriodCNT = 0;
  288. ass_stCalCoef.swCadanceCNT = 0;
  289. ass_stCalCoef.sw2StopCNT = 0;
  290. ass_stCalCoef.swAss2SpdCNT = 0;
  291. /*配置速度环参数*/
  292. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  293. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  294. ass_stCalCoef.swSpeedlimtrpm = -100;
  295. ass_stCalCoef.swBikeSpeedGain = 0;
  296. ass_stCalCoef.swMotorSpeedGain = Q12_1;
  297. /*设置电流限幅*/
  298. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  299. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  300. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  301. /*初始化标志*/
  302. ass_stCalCoef.blAssistflag = FALSE;
  303. ass_stCalOut.swTorAssistSum1 = 0;
  304. ass_stCalOut.swTorAssistSum2 = 0;
  305. ass_stCalOut.swTorAss2CurrentTemp = 0;
  306. ass_stCalOut.swCadAss2CurrentTemp = 0;
  307. ass_stCalOut.swTorAssistCurrentTemp = 0;
  308. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  309. ass_stCalOut.swTorAssistCurrent = 0;
  310. ass_stCalOut.swSpeedRef = 0;
  311. ass_stCalOut.swCadSpd2MotSpd = 0;
  312. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  313. ass_stCurLimCoef.uwLimitGain[1] = 400;
  314. ass_stCurLimCoef.uwLimitGain[2] = 682;
  315. ass_stCurLimCoef.uwLimitGain[3] = 910;
  316. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  317. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  318. ass_stCurLimCoef.uwSpdThresHold = 21845;
  319. /*设置车速限幅*/
  320. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  321. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  322. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  323. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  324. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  325. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  326. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  327. #if ((MOTOR_ID_SEL == MOTOR_WELLING_MTB_36V) || (MOTOR_ID_SEL == MOTOR_WELLING_MTB_48V))
  328. ass_stCurLimCoef.uwMotorSpdThresHold = SPD_RPM2PU(4290);//125Candance
  329. #elif ((MOTOR_ID_SEL == MOTOR_WELLING_CITY_36V) || (MOTOR_ID_SEL == MOTOR_WELLING_CITY_48V))
  330. ass_stCurLimCoef.uwMotorSpdThresHold = SPD_RPM2PU(3953);//115Candance
  331. #endif
  332. /*设置转矩电流标定系数*/
  333. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  334. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  335. ass_Tor2CurCalCoef.swCalCoefINV =
  336. (((SLONG)1 << 7) * 1000 * 1000) /
  337. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  338. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  339. ass_pvt_stCurLpf.slY.sl = 0;
  340. }
  341. /**
  342. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  343. *
  344. * @param coef polynomial coefficient a, b, c, d
  345. * @param Value polynomial input value X
  346. * @param Qnum polynomial input Q type
  347. * @return UWORD polynomial output Y
  348. */
  349. //void ass_voAssitTorqPIInit(void)
  350. //{
  351. // ass_stTorqPIOut.slIRefPu = 0;
  352. // ass_stTorqPIOut.swErrZ1Pu = 0;
  353. // ass_stTorqPIOut.swIRefPu = 0;
  354. //}
  355. //
  356. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  357. //{
  358. // SLONG slErrPu, slDeltaErrPu;
  359. // SLONG slIpPu, slIiPu;
  360. // SLONG slImaxPu, slIminPu;
  361. // SQWORD sqIRefPu, sqIpPu;
  362. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  363. //
  364. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  365. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  366. //
  367. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  368. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  369. //
  370. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  371. //
  372. // if (slErrPu > 32767)
  373. // {
  374. // slErrPu = 32767;
  375. // }
  376. // else if (slErrPu < -32768)
  377. // {
  378. // slErrPu = -32768;
  379. // }
  380. // else
  381. // {
  382. // /* Nothing */
  383. // }
  384. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  385. // slDeltaErrPu = slErrPu;
  386. // if (slDeltaErrPu > 32767)
  387. // {
  388. // slDeltaErrPu = 32767;
  389. // }
  390. // else if (slDeltaErrPu < -32768)
  391. // {
  392. // slDeltaErrPu = -32768;
  393. // }
  394. // else
  395. // {
  396. // /* Nothing */
  397. // }
  398. //
  399. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  400. // sqIpPu = (SQWORD)slIpPu << 3;
  401. //
  402. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  403. //
  404. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  405. // sqIRefPu = sqIpPu;
  406. //
  407. // if (sqIRefPu > slImaxPu)
  408. // {
  409. // out->slIRefPu = slImaxPu;
  410. // }
  411. // else if (sqIRefPu < slIminPu)
  412. // {
  413. // out->slIRefPu = slIminPu;
  414. // }
  415. // else
  416. // {
  417. // out->slIRefPu = sqIRefPu;
  418. // }
  419. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  420. // out->swErrZ1Pu = (SWORD)slErrPu;
  421. //}
  422. SWORD swPreCurrentPu;
  423. SWORD startonce = 0;
  424. UWORD kcoef =4096; //Q10
  425. UWORD uwTempStopCnt,StopCad,swMotorCadspd;
  426. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  427. {
  428. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  429. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  430. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  431. SWORD swTmpSpdtoTorqCur;
  432. SLONG slTmpSmoothCur;
  433. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  434. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  435. SWORD swCurSwitch = 0;
  436. SWORD swTmpVoltPu,swTmpVoltPu2;
  437. SLONG slSpdErr,slTmpVoltLim, slPreSpderror;
  438. SWORD swSpdKpPu = 500; //Q10
  439. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  440. SWORD swSpderror;
  441. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  442. /* Select Torq Growth Rate by Bike Gear */
  443. if (ass_stCalIn.uwGearSt == 1)
  444. {
  445. uwTorqAccStep = 50;
  446. }
  447. else if(ass_stCalIn.uwGearSt == 2)
  448. {
  449. uwTorqAccStep = 100;
  450. }
  451. else if(ass_stCalIn.uwGearSt == 3)
  452. {
  453. uwTorqAccStep = 120;
  454. }
  455. else if(ass_stCalIn.uwGearSt == 4)
  456. {
  457. uwTorqAccStep = 150;
  458. }
  459. else if(ass_stCalIn.uwGearSt == 5)
  460. {
  461. uwTorqAccStep = 150;
  462. }
  463. else
  464. {
  465. //do nothing
  466. }
  467. uwTorqDecStep = 80;
  468. AssCnt1ms ++;
  469. if(AssCnt1ms >= 10000)
  470. {
  471. AssCnt1ms = 0;
  472. }
  473. /* Select TorqRef: LPFTorq or MAFTorq */
  474. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  475. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  476. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  477. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  478. {
  479. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  480. }
  481. if(swTorqCmd < ass_stCalCoef.uwSwitch1TorqThreshold )
  482. {
  483. ass_stCalCoef.swCadanceGain = 0; //Q12
  484. }
  485. else if(swTorqCmd >= ass_stCalCoef.uwSwitch1TorqThreshold && swTorqCmd < ass_stCalCoef.uwSwitch2TorqThreshold)
  486. {
  487. ass_stCalCoef.swCadanceGain = (((ULONG)swTorqCmd - (ULONG)ass_stCalCoef.uwSwitch1TorqThreshold) * ass_stCalCoef.ulStartupDeltInv )>>16;
  488. }
  489. else
  490. {
  491. ass_stCalCoef.swCadanceGain = 4096; //Q12
  492. }
  493. /* Assist torque Cal using Assist Curve */
  494. #if(GIANT_ENABLE != 1)
  495. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  496. if(ass_stCalIn.uwGearSt == 5)
  497. {
  498. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  499. }
  500. else
  501. {
  502. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  503. }
  504. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  505. {
  506. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  507. }
  508. else
  509. {
  510. //do nothing;
  511. }
  512. #else
  513. slTeTorAssitTmpPu = (SLONG)giant_slPolynomial(&swTorqCmd);
  514. #endif
  515. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  516. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  517. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  518. {
  519. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  520. }
  521. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  522. {
  523. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  524. }
  525. /* Select Assist Percent of Torq and Candence*/
  526. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  527. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  528. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  529. /* Candance Speed to Motor Speed*/
  530. ass_stCalOut.swCadSpd2MotSpd =
  531. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  532. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  533. /* Back EMF Cal */
  534. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  535. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  536. if (swTmpVoltPu < swTmpVoltPu2)
  537. {
  538. swTmpVoltPu = swTmpVoltPu2;
  539. }
  540. swMotorCadspd =(SWORD)((SLONG)(ass_stCalIn.uwSpdFbkAbsPu << 15)/(ass_stParaCong.uwMechRationMotor * ass_stParaCong.uwMotorPoles)>>10);
  541. swSpderror = swMotorCadspd - 300;//(SWORD)ass_CalIn.uwcadance;
  542. if(swSpderror < 200)
  543. {
  544. StopCad = 200;
  545. }
  546. else
  547. {
  548. StopCad = swSpderror;
  549. }
  550. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  551. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  552. swPreCurrentPu = (SWORD)(((SLONG)swPreCurrentPu * 990 )>>10);
  553. /* Assist FSM Control */
  554. switch (Ass_FSM)
  555. {
  556. case Prepare:
  557. {
  558. UWORD tmpKp = 4000;//ass_ParaSet.uwStartUpCadNm ; //Q10
  559. slPreSpderror = (((SLONG)ass_stCalOut.swCadSpd2MotSpd * 800 )>>10) - ass_stCalIn.uwSpdFbkAbsPu; //Q15
  560. swPreCurrentPu = (slPreSpderror * tmpKp )>> 11; //Q14
  561. if(swPreCurrentPu < 0)
  562. {
  563. swPreCurrentPu = 0;
  564. }
  565. if((ass_stCalCoef.swAss2SpdCNT > 3000) || (ass_stCalIn.uwcadance == 0) || ((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold))) //踏频小于0.1 hz
  566. {
  567. Ass_FSM = StopAssit;
  568. ass_stCalCoef.swAss2SpdCNT = 0;
  569. }
  570. else
  571. {
  572. ass_stCalCoef.swAss2SpdCNT++;
  573. }
  574. if((ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 5) >> 3)) && (ass_stCalIn.uwcadance > 300)
  575. && ((BikeBrake_blGetstate() | bikegearsensor_blBikeGetState()) == FALSE))
  576. {
  577. Ass_FSM = Startup;
  578. ass_stCalCoef.swAss2SpdCNT=0;
  579. startonce = 0;
  580. }
  581. break;
  582. }
  583. case Startup:
  584. /* 启动系数 */
  585. if(ass_pvt_uwSmoothFlg == 0)
  586. {
  587. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  588. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  589. {
  590. ass_pvt_uwSmoothFlg = 1;
  591. }
  592. }
  593. else if (ass_pvt_uwSmoothFlg == 1)
  594. {
  595. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  596. {
  597. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  598. }
  599. else
  600. {
  601. ass_stCalCoef.swSmoothGain = Q12_1;
  602. Ass_FSM = TorqueAssit;
  603. ass_stCalCoef.StartFlag=0;
  604. ass_pvt_uwSmoothFlg = 2;
  605. }
  606. }
  607. else
  608. {
  609. // do nothing
  610. }
  611. // swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  612. // slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  613. // if(slSpdErr < 0)
  614. // {
  615. // slSpdErr = 0;
  616. // }
  617. //// ass_stCalCoef.StartFlag = 1;
  618. // /* Open Voltage Limit according SpdErr*/
  619. // if(ass_stCalCoef.StartFlag == 0)
  620. // {
  621. // slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  622. // if(slTmpVoltLim > scm_swVsDcpLimPu)
  623. // {
  624. // slTmpVoltLim = scm_swVsDcpLimPu;
  625. // }
  626. // else if(slTmpVoltLim <= swTmpVoltPu)
  627. // {
  628. // slTmpVoltLim = swTmpVoltPu;
  629. // }
  630. // else
  631. // {
  632. // //do nothing
  633. // }
  634. // ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  635. //
  636. // /* 电机与踏频转速差小于阈值启动完成 */
  637. // if(slSpdErr <= 1000)
  638. // {
  639. // ass_stCalCoef.StartFlag = 1;
  640. // }
  641. // /* 根据电流环饱和情况判断启动完成 */
  642. //// if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  643. //// {
  644. //// ass_pvt_swVoltCnt++;
  645. //// }
  646. //// else
  647. //// {
  648. //// ass_pvt_swVoltCnt=0;
  649. //// }
  650. //// if(ass_pvt_swVoltCnt > 10)
  651. //// {
  652. //// ass_pvt_swVoltCnt=0;
  653. //// ass_stCalCoef.StartFlag = 1;
  654. //// }
  655. // }
  656. // else if(ass_stCalCoef.StartFlag ==1 )
  657. // {
  658. // if(0 == (AssCnt1ms%5))
  659. // {
  660. // ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  661. // if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  662. // {
  663. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  664. // }
  665. // }
  666. //
  667. // if(slSpdErr <= 100)
  668. // {
  669. // ass_pvt_swVoltCnt++;
  670. // }
  671. // else
  672. // {
  673. // ass_pvt_swVoltCnt--;
  674. // if(ass_pvt_swVoltCnt < 0)
  675. // {
  676. // ass_pvt_swVoltCnt = 0;
  677. // }
  678. // }
  679. // /* Switch to TorqueAssit FSM */
  680. // if(ass_pvt_swVoltCnt > 30)
  681. // {
  682. // Ass_FSM = TorqueAssit;
  683. // ass_stCalCoef.StartFlag=0;
  684. // ass_pvt_swVoltCnt=0;
  685. // }
  686. // }
  687. // else
  688. // {
  689. // //do nothing
  690. // }
  691. /* Switch to ReduceCurrent FSM */
  692. if(((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) || (ass_stCalIn.uwcadance == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  693. {
  694. /* When CandanceFreq=0 or BikeGear=0*/
  695. ass_stCalCoef.swAss2SpdCNT = 0;
  696. Ass_FSM = ReduceCurrent;
  697. }
  698. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  699. {
  700. ass_stCalCoef.swAss2SpdCNT++;
  701. uwTempStopCnt = ((ULONG)1*100 << 14)/ ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  702. if(uwTempStopCnt < 300)
  703. {
  704. uwTempStopCnt = 300;
  705. }
  706. else if(uwTempStopCnt > 2000)
  707. {
  708. uwTempStopCnt = 2000;
  709. }
  710. if(ass_stCalCoef.swAss2SpdCNT > uwTempStopCnt)
  711. {
  712. Ass_FSM = ReduceCurrent;
  713. ass_stCalCoef.swAss2SpdCNT = 0;
  714. ass_stCalCoef.StartFlag=0;
  715. }
  716. }
  717. else
  718. {
  719. ass_stCalCoef.swAss2SpdCNT = 0;
  720. }
  721. break;
  722. case TorqueAssit:
  723. /* 启动系数 */
  724. if(ass_pvt_uwSmoothFlg == 0)
  725. {
  726. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  727. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  728. {
  729. ass_pvt_uwSmoothFlg = 1;
  730. }
  731. }
  732. else if (ass_pvt_uwSmoothFlg == 1)
  733. {
  734. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  735. {
  736. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  737. }
  738. else
  739. {
  740. ass_stCalCoef.swSmoothGain = Q12_1;
  741. ass_pvt_uwSmoothFlg = 2;
  742. }
  743. }
  744. else
  745. {
  746. // do nothing
  747. }
  748. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  749. if(0 == (AssCnt1ms%5))
  750. {
  751. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  752. // {
  753. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  754. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  755. {
  756. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  757. }
  758. // }
  759. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  760. // {
  761. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  762. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm))
  763. //// {
  764. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm;
  765. //// }
  766. // }
  767. // else
  768. // {
  769. // }
  770. }
  771. /* TorqueRef Select Coef */
  772. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  773. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  774. {
  775. ass_stCalCoef.swTorqFilterGain = Q14_1;
  776. }
  777. /* Switch to ReduceCurrent FSM */
  778. if(((ass_stCalIn.uwcadance < StopCad) && (ass_stCalIn.uwtorquePer <= ass_stCalCoef.uwAssStopThreshold)) || (ass_stCalIn.uwcadance == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  779. {
  780. /* When CandanceFreq=0 or BikeGear=0*/
  781. ass_stCalOut.blTorqPIFlg = FALSE;
  782. ass_stCalCoef.swAss2SpdCNT = 0;
  783. Ass_FSM = ReduceCurrent;
  784. ass_stCalCoef.StartFlag = 0;
  785. }
  786. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  787. {
  788. ass_stCalCoef.swAss2SpdCNT++;
  789. uwTempStopCnt = ((ULONG)1*100 << 14)/ ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_CalIn.uwcadance * FBASE) ;
  790. if(uwTempStopCnt < 300)
  791. {
  792. uwTempStopCnt = 300;
  793. }
  794. else if(uwTempStopCnt > 2000)
  795. {
  796. uwTempStopCnt = 2000;
  797. }
  798. if(ass_stCalCoef.swAss2SpdCNT > uwTempStopCnt)
  799. {
  800. ass_stCalCoef.swAss2SpdCNT = 0;
  801. ass_stCalOut.blTorqPIFlg = FALSE;
  802. Ass_FSM = ReduceCurrent;
  803. ass_stCalCoef.StartFlag = 0;
  804. }
  805. }
  806. else
  807. {
  808. ass_stCalCoef.swAss2SpdCNT = 0;
  809. }
  810. break;
  811. case ReduceCurrent:
  812. /* Switch to StopAssit FSM */
  813. if(ass_stCalCoef.swSmoothStopGain <= 0)
  814. {
  815. ass_pvt_uwSmoothFlg = 0;
  816. ass_stCalCoef.swSmoothGain = 0;
  817. ass_stCalCoef.swSmoothStopGain = 0;
  818. ass_stCalCoef.swTorqFilterGain = 0;
  819. ass_stCalCoef.swCadanceGain = 0;
  820. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  821. Ass_FSM = StopAssit;
  822. }
  823. else
  824. {
  825. /* Reduce Curret Coef to Zero*/
  826. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  827. ass_stCalCoef.swSmoothGain -= ass_stCalCoef.uwStartUpGainAddStep;
  828. ass_stCalCoef.swSmoothStopGain -= ass_stCalCoef.uwStartUpGainAddStep;
  829. }
  830. /* Switch to Startup FSM */
  831. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  832. // {
  833. // Ass_FSM = Startup;
  834. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  835. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  836. // }
  837. break;
  838. case StopAssit:
  839. if(ass_stCalIn.uwcadance == 0)
  840. {
  841. startonce = 0;
  842. }
  843. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  844. /* Switch to Startup FSM */
  845. if ((BikeBrake_blGetstate() == FALSE) && (bikegearsensor_blBikeGetState() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  846. {
  847. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold))
  848. {
  849. if (ass_stCalIn.uwcadance > 0)
  850. {
  851. ass_stCalCoef.sw2StopCNT = 0;
  852. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  853. ass_pvt_stCurLpf.slY.sw.hi = 0;
  854. ass_stCalCoef.swSmoothStopGain = Q12_1;
  855. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  856. Ass_FSM = Startup;
  857. }
  858. }
  859. else
  860. {
  861. if (ass_stCalIn.uwcadance > 300)
  862. {
  863. ass_stCalCoef.sw2StopCNT = 0;
  864. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  865. ass_pvt_stCurLpf.slY.sw.hi = 0;
  866. ass_stCalCoef.swSmoothStopGain = Q12_1;
  867. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  868. Ass_FSM = Prepare;
  869. startonce = 1;
  870. }
  871. swPreCurrentPu = 0;
  872. }
  873. }
  874. /* Assit Exit */
  875. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  876. {
  877. ass_stCalCoef.sw2StopCNT++;
  878. }
  879. else
  880. {
  881. if (ass_stCalCoef.sw2StopCNT >= 1)
  882. {
  883. ass_stCalCoef.sw2StopCNT--;
  884. }
  885. }
  886. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE)|| (bikegearsensor_blBikeGetState() == TRUE))// 3s
  887. {
  888. ass_stCalCoef.sw2StopCNT = 0;
  889. ass_stCalCoef.blAssistflag = FALSE;
  890. }
  891. break;
  892. default:
  893. break;
  894. }
  895. /* Bikespeed Limit */
  896. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  897. {
  898. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  899. }
  900. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  901. {
  902. ass_stCalCoef.swBikeSpeedGain =
  903. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  904. uwTorqAccStep = 10;
  905. uwTorqDecStep = 10;
  906. }
  907. else
  908. {
  909. ass_stCalCoef.swBikeSpeedGain = 0;
  910. uwTorqAccStep = 10;
  911. uwTorqDecStep = 10;
  912. }
  913. if (ass_stCalIn.uwSpdFbkAbsPu <= ass_stCurLimCoef.uwMotorSpdThresHold)
  914. {
  915. ass_stCalCoef.swMotorSpeedGain = Q12_1; // Q12
  916. }
  917. else
  918. {
  919. #if MOTORSPEEDLIMIT_ENABLE
  920. ass_stCalCoef.swMotorSpeedGain = 0; // Q12
  921. #else
  922. ass_stCalCoef.swMotorSpeedGain = Q12_1; // Q12
  923. #endif
  924. }
  925. /* Assist Current Output in each FSM */
  926. switch (Ass_FSM)
  927. {
  928. case Prepare:
  929. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * swPreCurrentPu;
  930. break;
  931. case Startup:
  932. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  933. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  934. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  935. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  936. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  937. {
  938. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  939. }
  940. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  941. {
  942. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  943. }
  944. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  945. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  946. if(swPreCurrentPu < ass_stCalOut.swTorRefEnd)
  947. {
  948. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  949. }
  950. else
  951. {
  952. ass_stCalOut.swTorAssistCurrentTemp = (ULONG)ass_stCalIn.swDirection * swPreCurrentPu;
  953. }
  954. break;
  955. case TorqueAssit:
  956. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  957. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  958. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  959. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  960. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  961. {
  962. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  963. }
  964. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  965. {
  966. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  967. }
  968. #if CURSWITCH
  969. /* Ajust CurrentRef growth and decline rate */
  970. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  971. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  972. {
  973. ass_pvt_uwTorqAccCnt++;
  974. if(ass_pvt_uwTorqAccCnt >= 2)
  975. {
  976. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  977. ass_pvt_uwTorqAccCnt = 0;
  978. }
  979. }
  980. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  981. {
  982. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  983. {
  984. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  985. }
  986. // ass_pvt_uwTorqDecCnt++;
  987. // if(ass_pvt_uwTorqDecCnt >= 10)
  988. // {
  989. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  990. // ass_pvt_uwTorqDecCnt = 0;
  991. // }
  992. }
  993. else
  994. {
  995. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  996. }
  997. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd * ass_stCalCoef.swCadanceGain >> 12;
  998. /* Torq Clzloop Test */
  999. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  1000. // {
  1001. // if(!ass_stCalOut.blTorqPIFlg)
  1002. // {
  1003. // /* Initial value */
  1004. // ass_stTorqPIOut.slIRefPu = 0;
  1005. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  1006. // ass_stCalOut.blTorqPIFlg = TRUE;
  1007. // }
  1008. //
  1009. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  1010. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  1011. // ass_stTorqPIIn.swImaxPu = 0;
  1012. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  1013. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  1014. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  1015. // }
  1016. // else
  1017. // {
  1018. // ass_stCalOut.blTorqPIFlg = FALSE;
  1019. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  1020. // }
  1021. #else
  1022. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp)*ass_CalCoef.swCadanceGain >> 12;
  1023. #endif
  1024. break;
  1025. case ReduceCurrent:
  1026. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1027. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1028. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1029. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1030. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  1031. {
  1032. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  1033. }
  1034. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  1035. {
  1036. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  1037. }
  1038. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp)*ass_stCalCoef.swCadanceGain >> 12;
  1039. break;
  1040. case StopAssit:
  1041. ass_stCalOut.swTorAssistCurrentTemp = 0;
  1042. ass_stCalOut.swTorRefEnd = 0;
  1043. break;
  1044. default:
  1045. break;
  1046. }
  1047. /* Assist Iqref Output */
  1048. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  1049. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  1050. /* Bikespeed Limit Coef*/
  1051. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  1052. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swMotorSpeedGain >> 12);
  1053. ass_stCalOut.swAssitCurRef = (SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swSmoothStopGain >> 12;
  1054. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  1055. }
  1056. /**
  1057. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  1058. *
  1059. * @param coef polynomial coefficient a, b, c, d
  1060. * @param Value polynomial input value X
  1061. * @param Qnum polynomial input Q type
  1062. * @return UWORD polynomial output Y
  1063. */
  1064. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  1065. {
  1066. /* Limit the Output Current according to Bike Gear */
  1067. UWORD uwIqLimitTemp1;
  1068. if(gear > 5)
  1069. {
  1070. gear = 5;
  1071. }
  1072. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  1073. #if(GIANT_ENABLE == 1)
  1074. if(stGiantControlParams.MaximumTorque > 0)
  1075. {
  1076. uwIqLimitTemp1 = uwCurMaxPu * stGiantControlParams.MaximumTorque * 10 / 75;
  1077. }
  1078. #endif
  1079. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  1080. }
  1081. /**
  1082. * @brief Assist function
  1083. *
  1084. * @param coef polynomial coefficient a, b, c, d
  1085. * @param Value polynomial input value X
  1086. * @param Qnum polynomial input Q type
  1087. * @return UWORD polynomial output Y
  1088. */
  1089. void ass_voAssist(void)
  1090. {
  1091. #ifdef TEST
  1092. ass_stCalIn.uwtorquePer = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1093. ass_stCalIn.uwtorque = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1094. ass_stCalIn.uwtorquelpf = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1095. ass_stCalIn.uwcadancePer = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1096. ass_stCalIn.uwcadance = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1097. #endif
  1098. /* Start Assist Jduge */
  1099. if (((ass_stCalIn.uwcadance > 0) || (ass_stCalIn.uwtorquePer > 3000)) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  1100. {
  1101. ass_stCalCoef.blAssistflag = TRUE;
  1102. }
  1103. if (ass_stCalCoef.blAssistflag == TRUE)
  1104. {
  1105. /* Calculate Iqref Limit */
  1106. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  1107. ass_stCalCoef.uwCurrentMaxPu = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  1108. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  1109. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  1110. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  1111. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  1112. /* Calculate Assist Current, Iqref*/
  1113. AssitCuvApplPerVolt();
  1114. /* Iqref Limit */
  1115. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1116. {
  1117. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1118. }
  1119. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1120. {
  1121. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1122. }
  1123. else
  1124. {
  1125. //do nothing
  1126. }
  1127. }
  1128. else
  1129. {
  1130. ass_stCalOut.swAssitCurRef = 0;
  1131. }
  1132. }
  1133. /**
  1134. * @brief
  1135. *
  1136. * @param
  1137. * @return
  1138. */
  1139. void ass_voMoveAverageFilter(MAF_IN *in)
  1140. {
  1141. in->slSum -= in->swBuffer[in->uwIndex];
  1142. in->swBuffer[in->uwIndex] = in->swValue;
  1143. in->slSum += (SLONG)in->swValue;
  1144. if (!in->blSecFlag)
  1145. {
  1146. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1147. }
  1148. else
  1149. {
  1150. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1151. }
  1152. in->uwIndex++;
  1153. if (in->uwIndex >= in->uwLength)
  1154. {
  1155. in->blSecFlag = TRUE;
  1156. in->uwIndex = 0;
  1157. }
  1158. }
  1159. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1160. {
  1161. UWORD i;
  1162. in->uwIndex = 0;
  1163. in->slSum = 0;
  1164. in->blSecFlag = FALSE;
  1165. in->slAverValue = 0;
  1166. for (i = 0; i < in->uwLength; i++)
  1167. {
  1168. in->swBuffer[i] = 0;
  1169. }
  1170. }