AssistCurve.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. #include "bikegearsensor.h"
  24. /******************************
  25. *
  26. * Parameter
  27. *
  28. ******************************/
  29. ASS_FSM_STATUS Ass_FSM;
  30. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  31. ASS_PER_COEF ass_stCalCoef;
  32. ASS_PER_OUT ass_stCalOut;
  33. ASS_PARA_CONFIGURE ass_stParaCong;
  34. ASS_PARA_SET ass_stParaSet;
  35. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  36. ASS_CURLIM_OUT ass_stCurLimOut;
  37. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  38. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  39. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  40. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  41. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  42. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  43. ASS_TORQ_PI_IN ass_stTorqPIIn;
  44. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  45. SWORD ass_swTorqMafBuf[64];
  46. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  47. SWORD ass_swUqLimMafBuf[64];
  48. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  49. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  50. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  51. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  52. static SWORD ass_pvt_swVoltCnt=0;
  53. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  54. static UWORD AssCnt1ms;
  55. static UWORD ass_pvt_uwSmoothFlg = 0;
  56. /******************************
  57. *
  58. * Function
  59. *
  60. ******************************/
  61. /**
  62. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  63. *
  64. * @param coef polynomial coefficient a, b, c, d
  65. * @param Value polynomial input value X
  66. * @param Qnum polynomial input Q type
  67. * @return UWORD polynomial output Y
  68. */
  69. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  70. {
  71. SLONG out;
  72. SLONG temp_a, temp_b, temp_c;
  73. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  74. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  75. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  76. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  77. out = temp_a + temp_b + temp_c + coef->d;
  78. out = (SLONG)out;
  79. return out;
  80. }
  81. /**
  82. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  83. *
  84. * @param coef original point coefficient z, h, k
  85. * @return POLY_COEF a, b, c, d
  86. */
  87. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  88. //{
  89. // POLY_COEF out;
  90. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  91. // out.a = (SQWORD)0; // Q12
  92. // out.b = (SQWORD)coef->z; // Q12
  93. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  94. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  95. // return out;
  96. //}
  97. /**
  98. * @brief Torque to Current when Id = 0;
  99. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  100. * @param coef polynomial coefficient a, b, c, d
  101. * @param Value polynomial input value X
  102. * @param Qnum polynomial input Q type
  103. * @return UWORD polynomial output Y
  104. */
  105. static SWORD ass_swTorq2CurPu(SWORD Tor)
  106. {
  107. SWORD swCurrentPu;
  108. SWORD swMotorTorqueNotPu;
  109. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  110. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  111. return swCurrentPu;
  112. }
  113. /**
  114. * @brief
  115. *
  116. * @param
  117. * @return
  118. */
  119. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  120. {
  121. UWORD TempAssit;
  122. UWORD TempGear, gear;
  123. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  124. // {
  125. // TempAssit = ass_stParaCong.uwAssistSelect1;
  126. // }
  127. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  128. // {
  129. // TempAssit = ass_stParaCong.uwAssistSelect2;
  130. // }
  131. // else
  132. // {
  133. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  134. // }
  135. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  136. {
  137. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  138. }
  139. else if (ass_stParaCong.uwStartMode == 2)
  140. {
  141. TempAssit = ass_stParaCong.uwAssistSelect1;
  142. }
  143. else if (ass_stParaCong.uwStartMode == 3)
  144. {
  145. TempAssit = ass_stParaCong.uwAssistSelect2;
  146. }
  147. else
  148. {
  149. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  150. }
  151. SLONG slTorqGainSum =0;
  152. for(UWORD i = 0; i < 4; i++)
  153. {
  154. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  155. }
  156. if(slTorqGainSum == 0)
  157. {
  158. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  159. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  160. UWORD a ;
  161. a =sizeof( slTorqAssGain);
  162. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  163. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  164. }
  165. for (gear = 0; gear < 5; gear++)
  166. {
  167. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  168. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  169. }
  170. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  171. }
  172. /**
  173. * @brief Para from EE Init
  174. *
  175. * @param void
  176. * @return void
  177. */
  178. void ass_voAssitEEInit(void)
  179. {
  180. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  181. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  182. ass_stParaCong.uwMechRationMotor = 35; // Q0
  183. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  184. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  185. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  186. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  187. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  188. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  189. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_PARA;
  190. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  191. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  192. ass_stParaCong.uwAutoPowerOffTime = BIKE_POWER_PARA;
  193. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  194. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  195. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  196. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  197. ass_stParaSet.uwStartUpGainStep = 25;
  198. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  199. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  200. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  201. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  202. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  203. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  204. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  205. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  206. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  207. ass_stParaSet.uwCadenceAssAjstGain = 4096; // Q12 percentage
  208. ass_stParaSet.uwAsssistSelectNum = 1;
  209. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  210. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  211. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  212. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  213. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  214. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  215. /* 函数私有变量初始化 */
  216. ass_pvt_swVoltCnt = 0;
  217. ass_pvt_uwTorqAccCnt = 0;
  218. ass_pvt_uwTorqDecCnt = 0;
  219. ass_pvt_uwSpd2TorqCnt = 0;
  220. ass_pvt_uwSmoothFlg = 0;
  221. AssCnt1ms = 0;
  222. }
  223. /**
  224. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  225. *
  226. * @param coef polynomial coefficient a, b, c, d
  227. * @param Value polynomial input value X
  228. * @param Qnum polynomial input Q type
  229. * @return UWORD polynomial output Y
  230. */
  231. LPF_OUT ass_pvt_stCurLpf;
  232. void ass_voAssitCoef(void)
  233. {
  234. /*状态机初始化*/
  235. Ass_FSM = StopAssit;
  236. /*电机限制初始化*/
  237. ass_stParaCong.uwCofCurMaxPu = ((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE; // Q14
  238. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  239. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  240. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  241. /*速度环参数初始化*/
  242. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  243. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  244. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  245. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  246. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  247. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  248. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  249. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  250. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  251. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  252. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  253. /*电流限幅计算*/
  254. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  255. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 20;
  256. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  257. ass_stCurLimCalBMSCoef.swIqLImitK =
  258. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  259. /*助力曲线初始化*/
  260. ass_voAssistModeSelect();
  261. /*助力启动阈值初始化*/
  262. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  263. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  264. /*助力系数初始化*/
  265. ass_stCalCoef.StartFlag = 0;
  266. ass_stCalCoef.swSmoothGain = 0; // Q12
  267. ass_stCalCoef.swSmoothStopGain = 4096; //Q12
  268. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  269. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  270. /*设置启动到正常助力最少踏频数*/
  271. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  272. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  273. {
  274. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  275. }
  276. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  277. {
  278. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  279. }
  280. /*设置滑动平均滤波踏频数*/
  281. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  282. ass_stCalCoef.swCadanceGain = 0;
  283. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  284. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  285. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  286. /*初始化计数*/
  287. ass_stCalCoef.uwCadencePeriodCNT = 0;
  288. ass_stCalCoef.swCadanceCNT = 0;
  289. ass_stCalCoef.sw2StopCNT = 0;
  290. ass_stCalCoef.swAss2SpdCNT = 0;
  291. /*配置速度环参数*/
  292. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  293. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  294. ass_stCalCoef.swSpeedlimtrpm = -100;
  295. ass_stCalCoef.swBikeSpeedGain = 0;
  296. /*设置电流限幅*/
  297. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  298. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  299. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  300. /*初始化标志*/
  301. ass_stCalCoef.blAssistflag = FALSE;
  302. ass_stCalOut.swTorAssistSum1 = 0;
  303. ass_stCalOut.swTorAssistSum2 = 0;
  304. ass_stCalOut.swTorAss2CurrentTemp = 0;
  305. ass_stCalOut.swCadAss2CurrentTemp = 0;
  306. ass_stCalOut.swTorAssistCurrentTemp = 0;
  307. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  308. ass_stCalOut.swTorAssistCurrent = 0;
  309. ass_stCalOut.swSpeedRef = 0;
  310. ass_stCalOut.swCadSpd2MotSpd = 0;
  311. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  312. ass_stCurLimCoef.uwLimitGain[1] = 400;
  313. ass_stCurLimCoef.uwLimitGain[2] = 682;
  314. ass_stCurLimCoef.uwLimitGain[3] = 910;
  315. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  316. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  317. ass_stCurLimCoef.uwSpdThresHold = 21845;
  318. /*设置车速限幅*/
  319. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  320. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  321. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  322. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  323. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  324. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  325. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  326. /*设置转矩电流标定系数*/
  327. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  328. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  329. ass_Tor2CurCalCoef.swCalCoefINV =
  330. (((SLONG)1 << 7) * 1000 * 1000) /
  331. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  332. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  333. ass_pvt_stCurLpf.slY.sl = 0;
  334. }
  335. /**
  336. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  337. *
  338. * @param coef polynomial coefficient a, b, c, d
  339. * @param Value polynomial input value X
  340. * @param Qnum polynomial input Q type
  341. * @return UWORD polynomial output Y
  342. */
  343. //void ass_voAssitTorqPIInit(void)
  344. //{
  345. // ass_stTorqPIOut.slIRefPu = 0;
  346. // ass_stTorqPIOut.swErrZ1Pu = 0;
  347. // ass_stTorqPIOut.swIRefPu = 0;
  348. //}
  349. //
  350. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  351. //{
  352. // SLONG slErrPu, slDeltaErrPu;
  353. // SLONG slIpPu, slIiPu;
  354. // SLONG slImaxPu, slIminPu;
  355. // SQWORD sqIRefPu, sqIpPu;
  356. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  357. //
  358. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  359. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  360. //
  361. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  362. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  363. //
  364. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  365. //
  366. // if (slErrPu > 32767)
  367. // {
  368. // slErrPu = 32767;
  369. // }
  370. // else if (slErrPu < -32768)
  371. // {
  372. // slErrPu = -32768;
  373. // }
  374. // else
  375. // {
  376. // /* Nothing */
  377. // }
  378. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  379. // slDeltaErrPu = slErrPu;
  380. // if (slDeltaErrPu > 32767)
  381. // {
  382. // slDeltaErrPu = 32767;
  383. // }
  384. // else if (slDeltaErrPu < -32768)
  385. // {
  386. // slDeltaErrPu = -32768;
  387. // }
  388. // else
  389. // {
  390. // /* Nothing */
  391. // }
  392. //
  393. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  394. // sqIpPu = (SQWORD)slIpPu << 3;
  395. //
  396. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  397. //
  398. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  399. // sqIRefPu = sqIpPu;
  400. //
  401. // if (sqIRefPu > slImaxPu)
  402. // {
  403. // out->slIRefPu = slImaxPu;
  404. // }
  405. // else if (sqIRefPu < slIminPu)
  406. // {
  407. // out->slIRefPu = slIminPu;
  408. // }
  409. // else
  410. // {
  411. // out->slIRefPu = sqIRefPu;
  412. // }
  413. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  414. // out->swErrZ1Pu = (SWORD)slErrPu;
  415. //}
  416. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  417. {
  418. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  419. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  420. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  421. SWORD swTmpSpdtoTorqCur;
  422. SLONG slTmpSmoothCur;
  423. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  424. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  425. SWORD swCurSwitch = 0;
  426. SWORD swTmpVoltPu,swTmpVoltPu2;
  427. SLONG slSpdErr,slTmpVoltLim;
  428. SWORD swSpdKpPu = 500; //Q10
  429. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  430. UWORD uwTmpStopCnt = 0;
  431. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  432. /* Select Torq Growth Rate by Bike Gear */
  433. if (ass_stCalIn.uwGearSt == 1)
  434. {
  435. uwTorqAccStep = 50;
  436. }
  437. else if(ass_stCalIn.uwGearSt == 2)
  438. {
  439. uwTorqAccStep = 100;
  440. }
  441. else if(ass_stCalIn.uwGearSt == 3)
  442. {
  443. uwTorqAccStep = 120;
  444. }
  445. else if(ass_stCalIn.uwGearSt == 4)
  446. {
  447. uwTorqAccStep = 150;
  448. }
  449. else if(ass_stCalIn.uwGearSt == 5)
  450. {
  451. uwTorqAccStep = 150;
  452. }
  453. else
  454. {
  455. //do nothing
  456. }
  457. uwTorqDecStep = 80;
  458. AssCnt1ms ++;
  459. if(AssCnt1ms >= 10000)
  460. {
  461. AssCnt1ms = 0;
  462. }
  463. /* Select TorqRef: LPFTorq or MAFTorq */
  464. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  465. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  466. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  467. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  468. {
  469. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  470. }
  471. /* Assist torque Cal using Assist Curve */
  472. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  473. if(ass_stCalIn.uwGearSt == 5)
  474. {
  475. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  476. }
  477. else
  478. {
  479. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  480. }
  481. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  482. {
  483. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  484. }
  485. else
  486. {
  487. //do nothing;
  488. }
  489. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  490. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  491. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  492. {
  493. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  494. }
  495. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  496. {
  497. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  498. }
  499. /* Select Assist Percent of Torq and Candence*/
  500. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  501. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  502. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  503. /* Candance Speed to Motor Speed*/
  504. ass_stCalOut.swCadSpd2MotSpd =
  505. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  506. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  507. /* Back EMF Cal */
  508. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  509. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  510. if (swTmpVoltPu < swTmpVoltPu2)
  511. {
  512. swTmpVoltPu = swTmpVoltPu2;
  513. }
  514. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  515. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  516. /* Assist FSM Control */
  517. switch (Ass_FSM)
  518. {
  519. case Startup:
  520. /* 启动系数 */
  521. if(ass_pvt_uwSmoothFlg == 0)
  522. {
  523. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  524. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  525. {
  526. ass_pvt_uwSmoothFlg = 1;
  527. }
  528. }
  529. else if (ass_pvt_uwSmoothFlg == 1)
  530. {
  531. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  532. {
  533. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  534. }
  535. else
  536. {
  537. ass_stCalCoef.swSmoothGain = Q12_1;
  538. ass_pvt_uwSmoothFlg = 2;
  539. }
  540. }
  541. else
  542. {
  543. // do nothing
  544. }
  545. swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  546. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  547. if(slSpdErr < 0)
  548. {
  549. slSpdErr = 0;
  550. }
  551. // ass_stCalCoef.StartFlag = 1;
  552. /* Open Voltage Limit according SpdErr*/
  553. if(ass_stCalCoef.StartFlag == 0)
  554. {
  555. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  556. if(slTmpVoltLim > scm_swVsDcpLimPu)
  557. {
  558. slTmpVoltLim = scm_swVsDcpLimPu;
  559. }
  560. else if(slTmpVoltLim <= swTmpVoltPu)
  561. {
  562. slTmpVoltLim = swTmpVoltPu;
  563. }
  564. else
  565. {
  566. //do nothing
  567. }
  568. ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  569. /* 电机与踏频转速差小于阈值启动完成 */
  570. if(slSpdErr <= 1000)
  571. {
  572. ass_stCalCoef.StartFlag = 1;
  573. }
  574. /* 根据电流环饱和情况判断启动完成 */
  575. // if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  576. // {
  577. // ass_pvt_swVoltCnt++;
  578. // }
  579. // else
  580. // {
  581. // ass_pvt_swVoltCnt=0;
  582. // }
  583. // if(ass_pvt_swVoltCnt > 10)
  584. // {
  585. // ass_pvt_swVoltCnt=0;
  586. // ass_stCalCoef.StartFlag = 1;
  587. // }
  588. }
  589. else if(ass_stCalCoef.StartFlag ==1 )
  590. {
  591. if(0 == (AssCnt1ms%5))
  592. {
  593. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  594. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  595. {
  596. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  597. }
  598. }
  599. if(slSpdErr <= 100)
  600. {
  601. ass_pvt_swVoltCnt++;
  602. }
  603. else
  604. {
  605. ass_pvt_swVoltCnt--;
  606. if(ass_pvt_swVoltCnt < 0)
  607. {
  608. ass_pvt_swVoltCnt = 0;
  609. }
  610. }
  611. /* Switch to TorqueAssit FSM */
  612. if(ass_pvt_swVoltCnt > 30)
  613. {
  614. Ass_FSM = TorqueAssit;
  615. ass_stCalCoef.StartFlag=0;
  616. ass_pvt_swVoltCnt=0;
  617. }
  618. }
  619. else
  620. {
  621. //do nothing
  622. }
  623. /* Switch to ReduceCurrent FSM */
  624. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  625. {
  626. /* When CandanceFreq=0 or BikeGear=0*/
  627. ass_stCalCoef.swAss2SpdCNT = 0;
  628. Ass_FSM = ReduceCurrent;
  629. }
  630. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  631. {
  632. ass_stCalCoef.swAss2SpdCNT++;
  633. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_stCalIn.uwcadance * FBASE) ;
  634. if(uwTmpStopCnt < 200)
  635. {
  636. uwTmpStopCnt = 200;
  637. }
  638. else if(uwTmpStopCnt > 500)
  639. {
  640. uwTmpStopCnt = 500;
  641. }
  642. else
  643. {
  644. //do nothing
  645. }
  646. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  647. {
  648. Ass_FSM = ReduceCurrent;
  649. ass_stCalCoef.swAss2SpdCNT = 0;
  650. ass_stCalCoef.StartFlag=0;
  651. }
  652. }
  653. else
  654. {
  655. ass_stCalCoef.swAss2SpdCNT = 0;
  656. }
  657. break;
  658. case TorqueAssit:
  659. /* 启动系数 */
  660. if(ass_pvt_uwSmoothFlg == 0)
  661. {
  662. ass_stCalCoef.swSmoothGain += ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  663. if(ass_stCalCoef.swSmoothGain >= ass_stParaSet.uwStartupCoef)
  664. {
  665. ass_pvt_uwSmoothFlg = 1;
  666. }
  667. }
  668. else if (ass_pvt_uwSmoothFlg == 1)
  669. {
  670. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  671. {
  672. ass_stCalCoef.swSmoothGain -= (ass_stParaSet.uwSpeedAssistIMaxA >> 1);
  673. }
  674. else
  675. {
  676. ass_stCalCoef.swSmoothGain = Q12_1;
  677. ass_pvt_uwSmoothFlg = 2;
  678. }
  679. }
  680. else
  681. {
  682. // do nothing
  683. }
  684. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  685. if(0 == (AssCnt1ms%5))
  686. {
  687. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  688. // {
  689. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  690. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  691. {
  692. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  693. }
  694. // }
  695. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  696. // {
  697. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  698. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm))
  699. //// {
  700. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_stParaSet.uwStartUpCadNm;
  701. //// }
  702. // }
  703. // else
  704. // {
  705. // }
  706. }
  707. /* TorqueRef Select Coef */
  708. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  709. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  710. {
  711. ass_stCalCoef.swTorqFilterGain = Q14_1;
  712. }
  713. /* Switch to ReduceCurrent FSM */
  714. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE) || (bikegearsensor_blBikeGetState() == TRUE))
  715. {
  716. /* When CandanceFreq=0 or BikeGear=0*/
  717. ass_stCalOut.blTorqPIFlg = FALSE;
  718. ass_stCalCoef.swAss2SpdCNT = 0;
  719. Ass_FSM = ReduceCurrent;
  720. }
  721. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  722. {
  723. ass_stCalCoef.swAss2SpdCNT++;
  724. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_stCalIn.uwcadance * FBASE) ;
  725. if(uwTmpStopCnt < 200)
  726. {
  727. uwTmpStopCnt = 200;
  728. }
  729. else if(uwTmpStopCnt > 500)
  730. {
  731. uwTmpStopCnt = 500;
  732. }
  733. else
  734. {
  735. //do nothing
  736. }
  737. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  738. {
  739. ass_stCalCoef.swAss2SpdCNT = 0;
  740. ass_stCalOut.blTorqPIFlg = FALSE;
  741. Ass_FSM = ReduceCurrent;
  742. }
  743. }
  744. else
  745. {
  746. ass_stCalCoef.swAss2SpdCNT = 0;
  747. }
  748. break;
  749. case ReduceCurrent:
  750. /* Switch to StopAssit FSM */
  751. if(ass_stCalCoef.swSmoothStopGain <= 0)
  752. {
  753. ass_pvt_uwSmoothFlg = 0;
  754. ass_stCalCoef.swSmoothGain = 0;
  755. ass_stCalCoef.swSmoothStopGain = 0;
  756. ass_stCalCoef.swTorqFilterGain = 0;
  757. ass_stCalCoef.swCadanceGain = 0;
  758. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  759. Ass_FSM = StopAssit;
  760. }
  761. else
  762. {
  763. /* Reduce Curret Coef to Zero*/
  764. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  765. ass_stCalCoef.swSmoothGain -= ass_stCalCoef.uwStartUpGainAddStep;
  766. ass_stCalCoef.swSmoothStopGain -= ass_stCalCoef.uwStartUpGainAddStep;
  767. }
  768. /* Switch to Startup FSM */
  769. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  770. // {
  771. // Ass_FSM = Startup;
  772. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  773. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  774. // }
  775. break;
  776. case StopAssit:
  777. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  778. /* Switch to Startup FSM */
  779. if ((BikeBrake_blGetstate() == FALSE) && (bikegearsensor_blBikeGetState() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  780. {
  781. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  782. {
  783. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  784. {
  785. ass_stCalCoef.sw2StopCNT = 0;
  786. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  787. ass_pvt_stCurLpf.slY.sw.hi = 0;
  788. ass_stCalCoef.swSmoothStopGain = Q12_1;
  789. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  790. Ass_FSM = Startup;
  791. }
  792. }
  793. else
  794. {
  795. if (ass_stCalIn.uwtorquePer > (ass_stCalCoef.uwAssThreshold >> 1) && ass_stCalIn.uwcadance > 0)
  796. {
  797. ass_stCalCoef.sw2StopCNT = 0;
  798. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  799. ass_pvt_stCurLpf.slY.sw.hi = 0;
  800. ass_stCalCoef.swSmoothStopGain = Q12_1;
  801. ass_stCalCoef.swSmoothGain = ass_stParaSet.uwStartupCruiseCoef;
  802. Ass_FSM = Startup;
  803. }
  804. }
  805. }
  806. /* Assit Exit */
  807. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  808. {
  809. ass_stCalCoef.sw2StopCNT++;
  810. }
  811. else
  812. {
  813. if (ass_stCalCoef.sw2StopCNT >= 1)
  814. {
  815. ass_stCalCoef.sw2StopCNT--;
  816. }
  817. }
  818. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE)|| (bikegearsensor_blBikeGetState() == TRUE))// 3s
  819. {
  820. ass_stCalCoef.sw2StopCNT = 0;
  821. ass_stCalCoef.blAssistflag = FALSE;
  822. }
  823. break;
  824. default:
  825. break;
  826. }
  827. /* Bikespeed Limit */
  828. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  829. {
  830. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  831. }
  832. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  833. {
  834. ass_stCalCoef.swBikeSpeedGain =
  835. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  836. uwTorqAccStep = 10;
  837. uwTorqDecStep = 10;
  838. }
  839. else
  840. {
  841. ass_stCalCoef.swBikeSpeedGain = 0;
  842. uwTorqAccStep = 10;
  843. uwTorqDecStep = 10;
  844. }
  845. /* Assist Current Output in each FSM */
  846. switch (Ass_FSM)
  847. {
  848. case Startup:
  849. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  850. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  851. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  852. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  853. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  854. {
  855. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  856. }
  857. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  858. {
  859. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  860. }
  861. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  862. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  863. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  864. break;
  865. case TorqueAssit:
  866. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  867. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  868. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  869. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  870. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  871. {
  872. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  873. }
  874. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  875. {
  876. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  877. }
  878. #if CURSWITCH
  879. /* Ajust CurrentRef growth and decline rate */
  880. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  881. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  882. {
  883. ass_pvt_uwTorqAccCnt++;
  884. if(ass_pvt_uwTorqAccCnt >= 2)
  885. {
  886. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  887. ass_pvt_uwTorqAccCnt = 0;
  888. }
  889. }
  890. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  891. {
  892. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  893. {
  894. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  895. }
  896. // ass_pvt_uwTorqDecCnt++;
  897. // if(ass_pvt_uwTorqDecCnt >= 10)
  898. // {
  899. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  900. // ass_pvt_uwTorqDecCnt = 0;
  901. // }
  902. }
  903. else
  904. {
  905. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  906. }
  907. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  908. /* Torq Clzloop Test */
  909. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  910. // {
  911. // if(!ass_stCalOut.blTorqPIFlg)
  912. // {
  913. // /* Initial value */
  914. // ass_stTorqPIOut.slIRefPu = 0;
  915. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  916. // ass_stCalOut.blTorqPIFlg = TRUE;
  917. // }
  918. //
  919. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  920. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  921. // ass_stTorqPIIn.swImaxPu = 0;
  922. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  923. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  924. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  925. // }
  926. // else
  927. // {
  928. // ass_stCalOut.blTorqPIFlg = FALSE;
  929. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  930. // }
  931. #else
  932. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  933. #endif
  934. break;
  935. case ReduceCurrent:
  936. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  937. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  938. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  939. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  940. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  941. {
  942. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  943. }
  944. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  945. {
  946. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  947. }
  948. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  949. break;
  950. case StopAssit:
  951. ass_stCalOut.swTorAssistCurrentTemp = 0;
  952. ass_stCalOut.swTorRefEnd = 0;
  953. break;
  954. default:
  955. break;
  956. }
  957. /* Assist Iqref Output */
  958. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  959. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  960. /* Bikespeed Limit Coef*/
  961. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  962. ass_stCalOut.swAssitCurRef = (SLONG)ass_stCalOut.swAssitCurRef * ass_stCalCoef.swSmoothStopGain >> 12;
  963. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  964. }
  965. /**
  966. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  967. *
  968. * @param coef polynomial coefficient a, b, c, d
  969. * @param Value polynomial input value X
  970. * @param Qnum polynomial input Q type
  971. * @return UWORD polynomial output Y
  972. */
  973. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  974. {
  975. /* Limit the Output Current according to Bike Gear */
  976. UWORD uwIqLimitTemp1;
  977. if(gear > 5)
  978. {
  979. gear = 5;
  980. }
  981. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  982. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  983. }
  984. /**
  985. * @brief
  986. *
  987. * @param
  988. * @return
  989. */
  990. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  991. {
  992. /* Limit the Output Current according to Bike SOC */
  993. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  994. {
  995. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  996. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - ((ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  997. }
  998. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  999. {
  1000. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  1001. }
  1002. else
  1003. {
  1004. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  1005. }
  1006. }
  1007. /**
  1008. * @brief Assist function
  1009. *
  1010. * @param coef polynomial coefficient a, b, c, d
  1011. * @param Value polynomial input value X
  1012. * @param Qnum polynomial input Q type
  1013. * @return UWORD polynomial output Y
  1014. */
  1015. void ass_voAssist(void)
  1016. {
  1017. #ifdef TEST
  1018. ass_stCalIn.uwtorquePer = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1019. ass_stCalIn.uwtorque = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1020. ass_stCalIn.uwtorquelpf = (UWORD)(((ULONG)10*10 << 14) / TORQUEBASE);
  1021. ass_stCalIn.uwcadancePer = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1022. ass_stCalIn.uwcadance = (UWORD)(((ULONG)30 << 20) / cof_uwFbHz / 60);
  1023. #endif
  1024. /* Start Assist Jduge */
  1025. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  1026. {
  1027. ass_stCalCoef.blAssistflag = TRUE;
  1028. }
  1029. if (ass_stCalCoef.blAssistflag == TRUE)
  1030. {
  1031. /* Calculate Iqref Limit */
  1032. UWORD uwIqLimitTemp;
  1033. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  1034. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  1035. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  1036. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  1037. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  1038. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  1039. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  1040. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  1041. /* Calculate Assist Current, Iqref*/
  1042. AssitCuvApplPerVolt();
  1043. /* Iqref Limit */
  1044. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1045. {
  1046. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1047. }
  1048. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  1049. {
  1050. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  1051. }
  1052. else
  1053. {
  1054. //do nothing
  1055. }
  1056. }
  1057. else
  1058. {
  1059. ass_stCalOut.swAssitCurRef = 0;
  1060. }
  1061. }
  1062. /**
  1063. * @brief
  1064. *
  1065. * @param
  1066. * @return
  1067. */
  1068. void ass_voMoveAverageFilter(MAF_IN *in)
  1069. {
  1070. in->slSum -= in->swBuffer[in->uwIndex];
  1071. in->swBuffer[in->uwIndex] = in->swValue;
  1072. in->slSum += (SLONG)in->swValue;
  1073. // if (!in->blSecFlag)
  1074. // {
  1075. // in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1076. // }
  1077. // else
  1078. // {
  1079. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1080. // }
  1081. in->uwIndex++;
  1082. if (in->uwIndex >= in->uwLength)
  1083. {
  1084. in->blSecFlag = TRUE;
  1085. in->uwIndex = 0;
  1086. }
  1087. }
  1088. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1089. {
  1090. UWORD i;
  1091. in->uwIndex = 0;
  1092. in->slSum = 0;
  1093. in->blSecFlag = FALSE;
  1094. in->slAverValue = 0;
  1095. for (i = 0; i < in->uwLength; i++)
  1096. {
  1097. in->swBuffer[i] = 0;
  1098. }
  1099. }