AssistCurve.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "bikebrake.h"
  21. #include "Cadence.h"
  22. #include "flash_master.h"
  23. /******************************
  24. *
  25. * Parameter
  26. *
  27. ******************************/
  28. ASS_FSM_STATUS Ass_FSM;
  29. ASS_PER_IN ass_stCalIn = TORQUE_CAL_IN_DEFAULT;
  30. ASS_PER_COEF ass_stCalCoef;
  31. ASS_PER_OUT ass_stCalOut;
  32. ASS_PARA_CONFIGURE ass_stParaCong;
  33. ASS_PARA_SET ass_stParaSet;
  34. ASS_CURLIM_COEF ass_stCurLimCoef = ASS_LIM_DEFAULT;
  35. ASS_CURLIM_OUT ass_stCurLimOut;
  36. ASS_LIMIT_ACCORDING_VOL_COF ass_stCurLimCalBMSCoef;
  37. ASS_LIMIT_ACCORDING_VOL_OUT ass_stCurLimitCalBMSOut;
  38. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  39. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  40. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  41. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  42. ASS_TORQ_PI_IN ass_stTorqPIIn;
  43. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  44. SWORD ass_swTorqMafBuf[64];
  45. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  46. SWORD ass_swUqLimMafBuf[64];
  47. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  48. static TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  49. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  50. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  51. static SWORD ass_pvt_swVoltCnt=0;
  52. static UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  53. static UWORD AssCnt1ms;
  54. /******************************
  55. *
  56. * Function
  57. *
  58. ******************************/
  59. /**
  60. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  61. *
  62. * @param coef polynomial coefficient a, b, c, d
  63. * @param Value polynomial input value X
  64. * @param Qnum polynomial input Q type
  65. * @return UWORD polynomial output Y
  66. */
  67. static SLONG ass_slPolynomial(const POLY_COEF *coef, const SWORD *value, UWORD Qnum)
  68. {
  69. SLONG out;
  70. SLONG temp_a, temp_b, temp_c;
  71. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  72. temp_a = (SLONG)((((((SQWORD)coef->a * *value >> 12) * *value) >> (SWORD)Qnum) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  73. temp_b = (SLONG)((((SQWORD)coef->b * *value >> 12) * *value) >> (SWORD)Qnum); // Qx+Q12-Q12+Qx-Qx=Qx
  74. temp_c = (SLONG)((SQWORD)coef->c * *value >> 12); // Qx+Q12-Q12=Qx
  75. out = temp_a + temp_b + temp_c + coef->d;
  76. out = (SLONG)out;
  77. return out;
  78. }
  79. /**
  80. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  81. *
  82. * @param coef original point coefficient z, h, k
  83. * @return POLY_COEF a, b, c, d
  84. */
  85. //static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  86. //{
  87. // POLY_COEF out;
  88. // /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  89. // out.a = (SQWORD)0; // Q12
  90. // out.b = (SQWORD)coef->z; // Q12
  91. // out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  92. // out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  93. // return out;
  94. //}
  95. /**
  96. * @brief Torque to Current when Id = 0;
  97. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  98. * @param coef polynomial coefficient a, b, c, d
  99. * @param Value polynomial input value X
  100. * @param Qnum polynomial input Q type
  101. * @return UWORD polynomial output Y
  102. */
  103. static SWORD ass_swTorq2CurPu(SWORD Tor)
  104. {
  105. SWORD swCurrentPu;
  106. SWORD swMotorTorqueNotPu;
  107. swMotorTorqueNotPu = (SWORD)(((SLONG)Tor * (SWORD)TORQUEBASE / (SWORD)ass_stParaCong.uwMechRationMotor) >> 7); // Q14-Q7 = Q7 0.1Nm Not Pu
  108. swCurrentPu = (SWORD)(((SLONG)swMotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE); // Q7+Q7 = Q14; 0.1Nm/0.01A
  109. return swCurrentPu;
  110. }
  111. /**
  112. * @brief
  113. *
  114. * @param
  115. * @return
  116. */
  117. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  118. {
  119. UWORD TempAssit;
  120. UWORD TempGear, gear;
  121. // if (ass_stParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  122. // {
  123. // TempAssit = ass_stParaCong.uwAssistSelect1;
  124. // }
  125. // else if (ass_stParaSet.uwAsssistSelectNum == 2)
  126. // {
  127. // TempAssit = ass_stParaCong.uwAssistSelect2;
  128. // }
  129. // else
  130. // {
  131. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  132. // }
  133. if (ass_stParaCong.uwStartMode == 1) // OBC:更换成EE参数
  134. {
  135. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  136. }
  137. else if (ass_stParaCong.uwStartMode == 2)
  138. {
  139. TempAssit = ass_stParaCong.uwAssistSelect1;
  140. }
  141. else if (ass_stParaCong.uwStartMode == 3)
  142. {
  143. TempAssit = ass_stParaCong.uwAssistSelect2;
  144. }
  145. else
  146. {
  147. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  148. }
  149. SLONG slTorqGainSum =0;
  150. for(UWORD i = 0; i < 4; i++)
  151. {
  152. slTorqGainSum += flash_stPara.slTorqAssGain[0][i];
  153. }
  154. if(slTorqGainSum == 0)
  155. {
  156. SLONG slTorqAssGain[15][4] = TORQUE_ASSIST_DEFAULT;
  157. SLONG slCadAssGain[5][4] = CADENCE_ASSIST_DEFAULT;
  158. UWORD a ;
  159. a =sizeof( slTorqAssGain);
  160. memcpy(&flash_stPara.slTorqAssGain[0], &slTorqAssGain[0], sizeof(slTorqAssGain));
  161. memcpy(&flash_stPara.slCadAssGain[0], &slCadAssGain[0], sizeof(slCadAssGain));
  162. }
  163. for (gear = 0; gear < 5; gear++)
  164. {
  165. TempGear = gear * 3 + ((TempAssit >> (UWORD)(gear << 1)) & 0x0003);
  166. memcpy(&ass_stCalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  167. }
  168. memcpy(&ass_stCalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  169. }
  170. /**
  171. * @brief Para from EE Init
  172. *
  173. * @param void
  174. * @return void
  175. */
  176. void ass_voAssitEEInit(void)
  177. {
  178. ass_stParaCong.uwWheelPerimeter = BIKE_WHEEL_PERIMETER; // Q0 0.1CM
  179. ass_stParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  180. ass_stParaCong.uwMechRationMotor = 35; // Q0
  181. ass_stParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  182. ass_stParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  183. ass_stParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  184. ass_stParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  185. ass_stParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  186. ass_stParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  187. ass_stParaCong.uwLightVoltage = BIKE_LIGHT_PARA;
  188. ass_stParaCong.swDeltPerimeter = BIKE_WHEEL_SIZE_ADJUST;
  189. ass_stParaCong.uwStartMode = BIKE_START_MODE;
  190. ass_stParaCong.uwAutoPowerOffTime = BIKE_POWER_PARA;
  191. ass_stParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  192. ass_stParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  193. ass_stParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  194. ass_stParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  195. ass_stParaSet.uwStartUpGainStep = 25;
  196. ass_stParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  197. ass_stParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  198. ass_stParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  199. ass_stParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  200. ass_stParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  201. ass_stParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  202. ass_stParaSet.uwCadenceWeight = 1229; // Q12 percentage
  203. ass_stParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  204. ass_stParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  205. ass_stParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  206. ass_stParaSet.uwAsssistSelectNum = 1;
  207. ass_stParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  208. ass_stParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  209. ass_stParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  210. ass_stParaSet.uwSpdRegionGain[0] = 4094;
  211. ass_stParaSet.uwSpdRegionGain[1] = 4094;
  212. ass_stParaSet.uwSpdRegionGain[2] = 4094;
  213. /* 函数私有变量初始化 */
  214. ass_pvt_swVoltCnt = 0;
  215. ass_pvt_uwTorqAccCnt = 0;
  216. ass_pvt_uwTorqDecCnt = 0;
  217. ass_pvt_uwSpd2TorqCnt = 0;
  218. AssCnt1ms = 0;
  219. }
  220. /**
  221. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  222. *
  223. * @param coef polynomial coefficient a, b, c, d
  224. * @param Value polynomial input value X
  225. * @param Qnum polynomial input Q type
  226. * @return UWORD polynomial output Y
  227. */
  228. LPF_OUT ass_pvt_stCurLpf;
  229. void ass_voAssitCoef(void)
  230. {
  231. /*状态机初始化*/
  232. Ass_FSM = StopAssit;
  233. /*电机限制初始化*/
  234. ass_stParaCong.uwCofCurMaxPu = ((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE; // Q14
  235. ass_stParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  236. ass_stParaCong.uwCofTorMaxPu = (UWORD)(((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  237. ass_stParaCong.uwBikeAssTorMaxPu = ass_stParaCong.uwCofTorMaxPu * ass_stParaCong.uwMechRationMotor; // Q14;
  238. /*速度环参数初始化*/
  239. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  240. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  241. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  242. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  243. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  244. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  245. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  246. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  247. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  248. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  249. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  250. /*电流限幅计算*/
  251. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs = ass_stParaCong.uwCofCurMaxPu; // Q14
  252. ass_stCurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  253. ass_stCurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  254. ass_stCurLimCalBMSCoef.swIqLImitK =
  255. (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - (SWORD)ass_stCurLimCalBMSCoef.uwIqLimitEndSoc);
  256. /*助力曲线初始化*/
  257. ass_voAssistModeSelect();
  258. /*助力启动阈值初始化*/
  259. ass_stCalCoef.uwAssThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStartNm << 14) / TORQUEBASE); // Q14
  260. ass_stCalCoef.uwAssStopThreshold = (UWORD)(((ULONG)ass_stParaSet.uwAssistStopNm << 14) / TORQUEBASE); // Q14;
  261. /*助力系数初始化*/
  262. ass_stCalCoef.StartFlag = 0;
  263. ass_stCalCoef.swSmoothGain = 0; // Q12
  264. ass_stCalCoef.uwStartUpTargetGain = 0; // Q12
  265. ass_stCalCoef.uwStartUpGainAddStep = ass_stParaSet.uwStartUpGainStep; // 25 Q12
  266. if (ass_stCalCoef.uwStartUpGainAddStep < 1)
  267. {
  268. ass_stCalCoef.uwStartUpGainAddStep = 1;
  269. }
  270. if (ass_stCalCoef.uwStartUpGainAddStep > 50)
  271. {
  272. ass_stCalCoef.uwStartUpGainAddStep = 50;
  273. }
  274. /*设置启动到正常助力最少踏频数*/
  275. ass_stCalCoef.uwStartUpTimeCadenceCnt = ass_stParaSet.uwStartUpCadNm;
  276. if (ass_stCalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  277. {
  278. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES >> 3;
  279. }
  280. if (ass_stCalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  281. {
  282. ass_stCalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  283. }
  284. /*设置滑动平均滤波踏频数*/
  285. ass_stTorqMafValue.uwLength = ass_stParaSet.uwTorLPFCadNm;
  286. ass_stCalCoef.swCadanceGain = 0;
  287. ass_stCalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  288. ass_stCalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  289. ass_stCalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_stCalCoef.uwSwitch2TorqThreshold - ass_stCalCoef.uwSwitch1TorqThreshold); // Q14;
  290. /*初始化计数*/
  291. ass_stCalCoef.uwCadencePeriodCNT = 0;
  292. ass_stCalCoef.swCadanceCNT = 0;
  293. ass_stCalCoef.sw2StopCNT = 0;
  294. ass_stCalCoef.swAss2SpdCNT = 0;
  295. /*配置速度环参数*/
  296. ass_stCalCoef.uwSpeedConstantCommand = (UWORD)(((ULONG)ass_stParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_stParaCong.uwMotorPoles));
  297. ass_stCalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_stParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  298. ass_stCalCoef.swSpeedlimtrpm = -100;
  299. ass_stCalCoef.swBikeSpeedGain = 0;
  300. /*设置电流限幅*/
  301. ass_stCalCoef.uwCurrentMaxPu = ass_stParaCong.uwCofCurMaxPu;
  302. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  303. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight )>> 12); // Q14
  304. /*初始化标志*/
  305. ass_stCalCoef.blAssistflag = FALSE;
  306. ass_stCalOut.swTorAssistSum1 = 0;
  307. ass_stCalOut.swTorAssistSum2 = 0;
  308. ass_stCalOut.swTorAss2CurrentTemp = 0;
  309. ass_stCalOut.swCadAss2CurrentTemp = 0;
  310. ass_stCalOut.swTorAssistCurrentTemp = 0;
  311. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  312. ass_stCalOut.swTorAssistCurrent = 0;
  313. ass_stCalOut.swSpeedRef = 0;
  314. ass_stCalOut.swCadSpd2MotSpd = 0;
  315. ass_stCurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  316. ass_stCurLimCoef.uwLimitGain[1] = 400;
  317. ass_stCurLimCoef.uwLimitGain[2] = 682;
  318. ass_stCurLimCoef.uwLimitGain[3] = 910;
  319. ass_stCurLimCoef.uwLimitGain[4] = 1024;
  320. ass_stCurLimCoef.uwLimitGain[5] = 1024;
  321. ass_stCurLimCoef.uwSpdThresHold = 21845;
  322. /*设置车速限幅*/
  323. ass_stCurLimCoef.uwBikeSpdThresHold1 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStart /
  324. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  325. ass_stCurLimCoef.uwBikeSpdThresHold2 = (UWORD)(((UQWORD)1000 << 20) * ass_stParaSet.uwAssistLimitBikeSpdStop /
  326. ((UQWORD)36 * (ass_stParaCong.uwWheelPerimeter + (UWORD)ass_stParaCong.swDeltPerimeter) * FBASE)); // Q20 3216 = Q10(3.1415926)
  327. ass_stCurLimCoef.ulBikeSpdDeltInv = (ULONG)(((UQWORD)1 << 20) / (ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1)); // Q20;
  328. ass_stCurLimCoef.uwBikeSpdIqLimitK =
  329. (UWORD)((((ULONG)ass_stCurLimCoef.uwBikeSpdThresHold2 - ass_stCurLimCoef.uwBikeSpdThresHold1) << 8) / ass_stParaCong.uwCofCurMaxPu); // Q28-q14 = Q14;
  330. /*设置转矩电流标定系数*/
  331. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  332. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_stParaCong.uwMotorPoles;
  333. ass_Tor2CurCalCoef.swCalCoefINV =
  334. (((SLONG)1 << 7) * 1000 * 1000) /
  335. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  336. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  337. ass_pvt_stCurLpf.slY.sl = 0;
  338. }
  339. /**
  340. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  341. *
  342. * @param coef polynomial coefficient a, b, c, d
  343. * @param Value polynomial input value X
  344. * @param Qnum polynomial input Q type
  345. * @return UWORD polynomial output Y
  346. */
  347. //void ass_voAssitTorqPIInit(void)
  348. //{
  349. // ass_stTorqPIOut.slIRefPu = 0;
  350. // ass_stTorqPIOut.swErrZ1Pu = 0;
  351. // ass_stTorqPIOut.swIRefPu = 0;
  352. //}
  353. //
  354. //void ass_voAssitTorqPI(const ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  355. //{
  356. // SLONG slErrPu, slDeltaErrPu;
  357. // SLONG slIpPu, slIiPu;
  358. // SLONG slImaxPu, slIminPu;
  359. // SQWORD sqIRefPu, sqIpPu;
  360. // UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  361. //
  362. //// uwKpPu = ass_stParaSet.uwSpeedAssistIMaxA;
  363. //// uwKitPu = ass_stParaSet.uwStartUpCadNm;
  364. //
  365. // slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  366. // slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  367. //
  368. // slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  369. //
  370. // if (slErrPu > 32767)
  371. // {
  372. // slErrPu = 32767;
  373. // }
  374. // else if (slErrPu < -32768)
  375. // {
  376. // slErrPu = -32768;
  377. // }
  378. // else
  379. // {
  380. // /* Nothing */
  381. // }
  382. // //slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  383. // slDeltaErrPu = slErrPu;
  384. // if (slDeltaErrPu > 32767)
  385. // {
  386. // slDeltaErrPu = 32767;
  387. // }
  388. // else if (slDeltaErrPu < -32768)
  389. // {
  390. // slDeltaErrPu = -32768;
  391. // }
  392. // else
  393. // {
  394. // /* Nothing */
  395. // }
  396. //
  397. // slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  398. // sqIpPu = (SQWORD)slIpPu << 3;
  399. //
  400. // slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  401. //
  402. // //sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  403. // sqIRefPu = sqIpPu;
  404. //
  405. // if (sqIRefPu > slImaxPu)
  406. // {
  407. // out->slIRefPu = slImaxPu;
  408. // }
  409. // else if (sqIRefPu < slIminPu)
  410. // {
  411. // out->slIRefPu = slIminPu;
  412. // }
  413. // else
  414. // {
  415. // out->slIRefPu = sqIRefPu;
  416. // }
  417. // out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  418. // out->swErrZ1Pu = (SWORD)slErrPu;
  419. //}
  420. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  421. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  422. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  423. SWORD swTmpSpdtoTorqCur;
  424. SLONG slTmpSmoothCur;
  425. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  426. static void AssitCuvApplPerVolt(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  427. {
  428. UWORD uwTorqAccStep = 50,uwTorqDecStep = 80;
  429. SWORD swCurSwitch = 0;
  430. SWORD swTmpVoltPu,swTmpVoltPu2;
  431. SLONG slSpdErr,slTmpVoltLim;
  432. SWORD swSpdKpPu = 500; //Q10
  433. UWORD uwVoltAccStep = 1, uwVoltDecStep = 3;
  434. UWORD uwTmpStopCnt = 0;
  435. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  436. /* Select Torq Growth Rate by Bike Gear */
  437. if (ass_stCalIn.uwGearSt == 1)
  438. {
  439. uwTorqAccStep = 50;
  440. }
  441. else if(ass_stCalIn.uwGearSt == 2)
  442. {
  443. uwTorqAccStep = 100;
  444. }
  445. else if(ass_stCalIn.uwGearSt == 3)
  446. {
  447. uwTorqAccStep = 120;
  448. }
  449. else if(ass_stCalIn.uwGearSt == 4)
  450. {
  451. uwTorqAccStep = 150;
  452. }
  453. else if(ass_stCalIn.uwGearSt == 5)
  454. {
  455. uwTorqAccStep = 150;
  456. }
  457. else
  458. {
  459. //do nothing
  460. }
  461. uwTorqDecStep = 80;
  462. AssCnt1ms ++;
  463. if(AssCnt1ms >= 10000)
  464. {
  465. AssCnt1ms = 0;
  466. }
  467. /* Select TorqRef: LPFTorq or MAFTorq */
  468. swTorqCmd1 = (SWORD)(((SLONG)ass_stCalIn.uwtorque * ass_stCalCoef.swTorqFilterGain >> 14) +
  469. ((SLONG)ass_stCalIn.uwtorquelpf * (Q14_1 - ass_stCalCoef.swTorqFilterGain) >> 14)); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  470. swTorqCmd = (SWORD)(((SLONG)swTorqCmd1 * ass_stCalCoef.swSmoothGain) >> 12); //转矩指令斜坡
  471. if (swTorqCmd > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  472. {
  473. swTorqCmd = (SWORD)ass_stParaCong.uwBikeAssTorMaxPu;
  474. }
  475. /* Assist torque Cal using Assist Curve */
  476. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_stCalCoef.uwTorqueAssGain[ass_stCalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  477. if(ass_stCalIn.uwGearSt == 5)
  478. {
  479. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273; // Q14 转矩助力曲线线性段
  480. }
  481. else
  482. {
  483. slTeTorAssitLinerPu = (((SLONG)swTorqCmd * LinerAssist[ass_stCalIn.uwGearSt-1] )>> 12) + 273;
  484. }
  485. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  486. {
  487. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  488. }
  489. else
  490. {
  491. //do nothing;
  492. }
  493. swCadCmd = (SWORD)((((SLONG)ass_stCalIn.uwcadance * ass_stCalCoef.swSmoothGain) >> 12) * 10); // 踏频指令斜坡
  494. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_stCalCoef.uwCadencAsseGain[ass_stCalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  495. if (slTeTorAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  496. {
  497. slTeTorAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  498. }
  499. if (slTeCadAssitTmpPu > ass_stParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  500. {
  501. slTeCadAssitTmpPu = ass_stParaCong.uwBikeAssTorMaxPu;
  502. }
  503. /* Select Assist Percent of Torq and Candence*/
  504. swTeTorAssitPu1 = (SWORD)(slTeTorAssitTmpPu * (SLONG)ass_stParaSet.uwTorAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  505. swTeCadAssitPu1 = (SWORD)(slTeCadAssitTmpPu * (SLONG)ass_stParaSet.uwCadenceAssAjstGain >> 12); // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  506. ass_stCalOut.swTorAssistSum1 = swTeTorAssitPu1 + swTeCadAssitPu1; // Q14
  507. /* Candance Speed to Motor Speed*/
  508. ass_stCalOut.swCadSpd2MotSpd =
  509. (SWORD)(((SLONG)ass_stCalIn.uwcadance * (SWORD)ass_stParaCong.uwMechRationMotor * (SWORD)ass_stParaCong.uwMotorPoles) >> 5); // Q20-Q5= Q15 出力时电机转速计算
  510. ass_stCalCoef.uwCadencePeriodCNT = (UWORD)(TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_stCalIn.uwcadance * FBASE))); //一圈踏频时间计数
  511. /* Back EMF Cal */
  512. swTmpVoltPu = (SWORD)((SLONG)ass_stCalOut.swCadSpd2MotSpd * (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  513. swTmpVoltPu2 = (SWORD)((SLONG)ass_stCalIn.uwSpdFbkAbsPu* (SLONG)cof_uwFluxPu >> 13);//Q15+Q12-Q13=Q14;
  514. if (swTmpVoltPu < swTmpVoltPu2)
  515. {
  516. swTmpVoltPu = swTmpVoltPu2;
  517. }
  518. ass_stCalCoef.uwStartupGain = ass_stParaSet.uwStartupCoef ; //零速启动助力比计算
  519. ass_stCalCoef.uwStartupCruiseGain = ass_stParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  520. /* Assist FSM Control */
  521. switch (Ass_FSM)
  522. {
  523. case Startup:
  524. // ass_stCalCoef.swSmoothGain = Q12_1;
  525. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  526. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  527. {
  528. ass_stCalCoef.swSmoothGain = Q12_1;
  529. }
  530. swSpdKpPu = 1000; //ass_stParaSet.uwStartUpCadNm;
  531. slSpdErr = (SLONG)ass_stCalOut.swCadSpd2MotSpd - (SLONG)ass_stCalIn.uwSpdFbkAbsPu;
  532. if(slSpdErr < 0)
  533. {
  534. slSpdErr = 0;
  535. }
  536. // ass_stCalCoef.StartFlag = 1;
  537. /* Open Voltage Limit according SpdErr*/
  538. if(ass_stCalCoef.StartFlag == 0)
  539. {
  540. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  541. if(slTmpVoltLim > scm_swVsDcpLimPu)
  542. {
  543. slTmpVoltLim = scm_swVsDcpLimPu;
  544. }
  545. else if(slTmpVoltLim <= swTmpVoltPu)
  546. {
  547. slTmpVoltLim = swTmpVoltPu;
  548. }
  549. else
  550. {
  551. //do nothing
  552. }
  553. ass_stCalOut.swVoltLimitPu = (SWORD)slTmpVoltLim;
  554. if(slSpdErr <= 1000)
  555. {
  556. ass_stCalCoef.StartFlag = 1;
  557. }
  558. // if(ABS(scm_swIqRefPu- scm_swIqFdbLpfPu) > 200)
  559. // {
  560. // ass_pvt_swVoltCnt++;
  561. // }
  562. // else
  563. // {
  564. // ass_pvt_swVoltCnt=0;
  565. // }
  566. // if(ass_pvt_swVoltCnt > 10)
  567. // {
  568. // ass_pvt_swVoltCnt=0;
  569. // ass_stCalCoef.StartFlag = 1;
  570. // }
  571. }
  572. else if(ass_stCalCoef.StartFlag ==1 )
  573. {
  574. if(0 == (AssCnt1ms%5))
  575. {
  576. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  577. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  578. {
  579. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  580. }
  581. }
  582. if(slSpdErr <= 100)
  583. {
  584. ass_pvt_swVoltCnt++;
  585. }
  586. else
  587. {
  588. ass_pvt_swVoltCnt--;
  589. if(ass_pvt_swVoltCnt < 0)
  590. {
  591. ass_pvt_swVoltCnt = 0;
  592. }
  593. }
  594. /* Switch to TorqueAssit FSM */
  595. if(ass_pvt_swVoltCnt > 30)
  596. {
  597. Ass_FSM = TorqueAssit;
  598. ass_stCalCoef.StartFlag=0;
  599. ass_pvt_swVoltCnt=0;
  600. }
  601. }
  602. else
  603. {
  604. //do nothing
  605. }
  606. /* Switch to ReduceCurrent FSM */
  607. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  608. {
  609. /* When CandanceFreq=0 or BikeGear=0*/
  610. ass_stCalCoef.swAss2SpdCNT = 0;
  611. Ass_FSM = ReduceCurrent;
  612. }
  613. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  614. {
  615. ass_stCalCoef.swAss2SpdCNT++;
  616. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_stCalIn.uwcadance * FBASE) ;
  617. if(uwTmpStopCnt < 200)
  618. {
  619. uwTmpStopCnt = 200;
  620. }
  621. else if(uwTmpStopCnt > 500)
  622. {
  623. uwTmpStopCnt = 500;
  624. }
  625. else
  626. {
  627. //do nothing
  628. }
  629. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  630. {
  631. Ass_FSM = ReduceCurrent;
  632. ass_stCalCoef.swAss2SpdCNT = 0;
  633. ass_stCalCoef.StartFlag=0;
  634. }
  635. }
  636. else
  637. {
  638. ass_stCalCoef.swAss2SpdCNT = 0;
  639. }
  640. break;
  641. case TorqueAssit:
  642. /* 启动系数 */
  643. ass_stCalCoef.swSmoothGain += (SWORD)ass_stParaSet.uwSpeedAssistIMaxA; ////ass_stCalCoef.uwStartUpGainAddStep;
  644. if(ass_stCalCoef.swSmoothGain >= Q12_1)
  645. {
  646. ass_stCalCoef.swSmoothGain = Q12_1;
  647. }
  648. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  649. if(0 == (AssCnt1ms%5))
  650. {
  651. // if(ass_stCalIn.uwtorque >= ass_stCalCoef.uwSwitch1TorqThreshold)
  652. // {
  653. ass_stCalOut.swVoltLimitPu += ass_stCalCoef.uwStartUpGainAddStep;
  654. if (ass_stCalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  655. {
  656. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  657. }
  658. // }
  659. // else if (ass_stCalIn.uwtorque <= ass_stCalCoef.uwSwitch1TorqThreshold)
  660. // {
  661. //// ass_stCalOut.swVoltLimitPu -= ass_stCalCoef.uwSpeedConstantCommand;
  662. //// if (ass_stCalOut.swVoltLimitPu <= (tmpVoltargetPu + ass_ParaSet.uwStartUpCadNm))
  663. //// {
  664. //// ass_stCalOut.swVoltLimitPu = tmpVoltargetPu + ass_ParaSet.uwStartUpCadNm;
  665. //// }
  666. // }
  667. // else
  668. // {
  669. // }
  670. }
  671. /* TorqueRef Select Coef */
  672. ass_stCalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  673. if (ass_stCalCoef.swTorqFilterGain > Q14_1)
  674. {
  675. ass_stCalCoef.swTorqFilterGain = Q14_1;
  676. }
  677. /* Switch to ReduceCurrent FSM */
  678. if((ass_stCalIn.uwcadancePer == 0) || (ass_stCalIn.uwGearSt == 0) || BikeBrake_blGetstate() == TRUE)
  679. {
  680. /* When CandanceFreq=0 or BikeGear=0*/
  681. ass_stCalOut.blTorqPIFlg = FALSE;
  682. ass_stCalCoef.swAss2SpdCNT = 0;
  683. Ass_FSM = ReduceCurrent;
  684. }
  685. else if(ass_stCalIn.uwtorquePer <= (ass_stCalCoef.uwAssStopThreshold))
  686. {
  687. ass_stCalCoef.swAss2SpdCNT++;
  688. uwTmpStopCnt = ass_stCalIn.uwcadance;//((ULONG)1000<<20)/(ass_stCalIn.uwcadance * FBASE) ;
  689. if(uwTmpStopCnt < 200)
  690. {
  691. uwTmpStopCnt = 200;
  692. }
  693. else if(uwTmpStopCnt > 500)
  694. {
  695. uwTmpStopCnt = 500;
  696. }
  697. else
  698. {
  699. //do nothing
  700. }
  701. if(ass_stCalCoef.swAss2SpdCNT > uwTmpStopCnt)
  702. {
  703. ass_stCalCoef.swAss2SpdCNT = 0;
  704. ass_stCalOut.blTorqPIFlg = FALSE;
  705. Ass_FSM = ReduceCurrent;
  706. }
  707. }
  708. else
  709. {
  710. ass_stCalCoef.swAss2SpdCNT = 0;
  711. }
  712. break;
  713. case ReduceCurrent:
  714. /* Switch to StopAssit FSM */
  715. if(ass_stCalCoef.swSmoothGain <= 0)
  716. {
  717. ass_stCalCoef.swSmoothGain = 0;
  718. ass_stCalCoef.swTorqFilterGain = 0;
  719. ass_stCalCoef.swCadanceGain = 0;
  720. Ass_FSM = StopAssit;
  721. }
  722. else
  723. {
  724. /* Reduce Curret Coef to Zero*/
  725. ass_stCalCoef.swSmoothGain -=40;
  726. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  727. }
  728. /* Switch to Startup FSM */
  729. // if (ass_stCalIn.uwtorquePer > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwcadance > 0)
  730. // {
  731. // Ass_FSM = Startup;
  732. // ass_stCalOut.swSpeedRef = ass_stCalIn.uwSpdFbkAbsPu;
  733. // ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  734. // }
  735. break;
  736. case StopAssit:
  737. ass_stCalOut.swTorSpdLoopCurrentTemp = 0;
  738. /* Switch to Startup FSM */
  739. if ((BikeBrake_blGetstate() == FALSE) && (ass_stCalIn.uwGearSt > 0))
  740. {
  741. if (ass_stCalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  742. {
  743. if (ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  744. {
  745. ass_stCalCoef.sw2StopCNT = 0;
  746. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  747. ass_pvt_stCurLpf.slY.sw.hi = 0;
  748. Ass_FSM = Startup;
  749. }
  750. }
  751. else
  752. {
  753. if (ass_stCalIn.uwtorquelpf > ((ass_stCalCoef.uwAssThreshold * 3)>>3) && ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadance > 0)
  754. {
  755. ass_stCalCoef.sw2StopCNT = 0;
  756. ass_stCalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  757. ass_pvt_stCurLpf.slY.sw.hi = 0;
  758. Ass_FSM = Startup;
  759. }
  760. }
  761. }
  762. /* Assit Exit */
  763. if (ass_stCalIn.uwcadance == 0 || ass_stCalIn.uwtorquelpf < ass_stCalCoef.uwAssStopThreshold)
  764. {
  765. ass_stCalCoef.sw2StopCNT++;
  766. }
  767. else
  768. {
  769. if (ass_stCalCoef.sw2StopCNT >= 1)
  770. {
  771. ass_stCalCoef.sw2StopCNT--;
  772. }
  773. }
  774. if ((ass_stCalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_stCalIn.uwGearSt == 0) || (BikeBrake_blGetstate() == TRUE))// 3s
  775. {
  776. ass_stCalCoef.sw2StopCNT = 0;
  777. ass_stCalCoef.blAssistflag = FALSE;
  778. }
  779. break;
  780. default:
  781. break;
  782. }
  783. /* Bikespeed Limit */
  784. if (ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold1)
  785. {
  786. ass_stCalCoef.swBikeSpeedGain = Q12_1; // Q12
  787. }
  788. else if (ass_stCalIn.uwbikespeed > ass_stCurLimCoef.uwBikeSpdThresHold1 && ass_stCalIn.uwbikespeed <= ass_stCurLimCoef.uwBikeSpdThresHold2)
  789. {
  790. ass_stCalCoef.swBikeSpeedGain =
  791. (SWORD)(Q12_1 - ((((SQWORD)ass_stCalIn.uwbikespeed - (SQWORD)ass_stCurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_stCurLimCoef.ulBikeSpdDeltInv) >> 8)); // Q12
  792. uwTorqAccStep = 10;
  793. uwTorqDecStep = 10;
  794. }
  795. else
  796. {
  797. ass_stCalCoef.swBikeSpeedGain = 0;
  798. uwTorqAccStep = 10;
  799. uwTorqDecStep = 10;
  800. }
  801. /* Assist Current Output in each FSM */
  802. switch (Ass_FSM)
  803. {
  804. case Startup:
  805. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  806. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  807. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  808. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  809. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  810. {
  811. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  812. }
  813. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  814. {
  815. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  816. }
  817. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  818. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  819. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *ass_stCalOut.swTorRefEnd;
  820. break;
  821. case TorqueAssit:
  822. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  823. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  824. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  825. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  826. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  827. {
  828. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  829. }
  830. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  831. {
  832. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  833. }
  834. #if CURSWITCH
  835. /* Ajust CurrentRef growth and decline rate */
  836. ass_stCalOut.swTorRefTarget = ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp;
  837. if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) > 2)
  838. {
  839. ass_pvt_uwTorqAccCnt++;
  840. if(ass_pvt_uwTorqAccCnt >= 2)
  841. {
  842. ass_stCalOut.swTorRefEnd += (SWORD)uwTorqAccStep;
  843. ass_pvt_uwTorqAccCnt = 0;
  844. }
  845. }
  846. else if((ass_stCalOut.swTorRefTarget - ass_stCalOut.swTorRefEnd) < -1)
  847. {
  848. if (ass_stCalIn.uwcadance != ass_stCalIn.uwcadancelast)
  849. {
  850. ass_stCalOut.swTorRefEnd -= (SWORD)uwTorqDecStep;
  851. }
  852. // ass_pvt_uwTorqDecCnt++;
  853. // if(ass_pvt_uwTorqDecCnt >= 10)
  854. // {
  855. // ass_stCalOut.swTorRefEnd += uwTorqAccStep;
  856. // ass_pvt_uwTorqDecCnt = 0;
  857. // }
  858. }
  859. else
  860. {
  861. ass_stCalOut.swTorRefEnd = ass_stCalOut.swTorRefTarget;
  862. }
  863. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  864. /* Torq Clzloop Test */
  865. // if(ass_stCalIn.uwtorquelpf <= ass_stCalCoef.uwSwitch1TorqThreshold)
  866. // {
  867. // if(!ass_stCalOut.blTorqPIFlg)
  868. // {
  869. // /* Initial value */
  870. // ass_stTorqPIOut.slIRefPu = 0;
  871. // swCurSwitch = ABS(ass_stCalOut.swTorRefTarget); //ABS(ass_stCalOut.swAssitCurRef);
  872. // ass_stCalOut.blTorqPIFlg = TRUE;
  873. // }
  874. //
  875. // ass_stTorqPIIn.swTorqRefPu = ass_stCalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_stCalIn.uwtorque;
  876. // ass_stTorqPIIn.swTorqFdbPu = ass_stCalCoef.uwSwitch1TorqThreshold;
  877. // ass_stTorqPIIn.swImaxPu = 0;
  878. // ass_stTorqPIIn.swIminPu = -swCurSwitch;
  879. // ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  880. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  881. // }
  882. // else
  883. // {
  884. // ass_stCalOut.blTorqPIFlg = FALSE;
  885. // ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection * ass_stCalOut.swTorRefEnd;
  886. // }
  887. #else
  888. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  889. #endif
  890. break;
  891. case ReduceCurrent:
  892. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  893. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  894. ass_stCalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  895. ass_stCalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  896. if (ass_stCalOut.swTorAss2CurrentTemp > ass_stCalCoef.swCurrentmax_torAssPu)
  897. {
  898. ass_stCalOut.swTorAss2CurrentTemp = ass_stCalCoef.swCurrentmax_torAssPu;
  899. }
  900. if (ass_stCalOut.swCadAss2CurrentTemp > ass_stCalCoef.swCurrentmax_cadAssPu)
  901. {
  902. ass_stCalOut.swCadAss2CurrentTemp = ass_stCalCoef.swCurrentmax_cadAssPu;
  903. }
  904. ass_stCalOut.swTorAssistCurrentTemp = ass_stCalIn.swDirection *(ass_stCalOut.swTorAss2CurrentTemp + ass_stCalOut.swCadAss2CurrentTemp);
  905. break;
  906. case StopAssit:
  907. ass_stCalOut.swTorAssistCurrentTemp = 0;
  908. ass_stCalOut.swTorRefEnd = 0;
  909. break;
  910. default:
  911. break;
  912. }
  913. /* Assist Iqref Output */
  914. ass_stCalOut.swTorAssistCurrent = ass_stCalOut.swTorAssistCurrentTemp;
  915. mth_voLPFilter(ass_stCalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  916. /* Bikespeed Limit Coef*/
  917. ass_stCalOut.swAssitCurRef = (SWORD)((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_stCalCoef.swBikeSpeedGain >> 12);
  918. //ass_stCalOut.swAssitCurRef =ass_stCalOut.swTorAssistCurrent;
  919. }
  920. /**
  921. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  922. *
  923. * @param coef polynomial coefficient a, b, c, d
  924. * @param Value polynomial input value X
  925. * @param Qnum polynomial input Q type
  926. * @return UWORD polynomial output Y
  927. */
  928. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  929. {
  930. /* Limit the Output Current according to Bike Gear */
  931. UWORD uwIqLimitTemp1;
  932. if(gear > 5)
  933. {
  934. gear = 5;
  935. }
  936. uwIqLimitTemp1 = (UWORD)(((ULONG)ass_stCurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10);
  937. ass_stCurLimOut.uwIqlimit = uwIqLimitTemp1;
  938. }
  939. /**
  940. * @brief
  941. *
  942. * @param
  943. * @return
  944. */
  945. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  946. {
  947. /* Limit the Output Current according to Bike SOC */
  948. if (uwSOCvalue < ass_stCurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  949. {
  950. ass_stCurLimitCalBMSOut.uwIqLimitAbs =
  951. ass_stCurLimCalBMSCoef.uwIqLimitInitAbs - ((ass_stCurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_stCurLimCalBMSCoef.swIqLImitK);
  952. }
  953. else if (uwSOCvalue <= ass_stCurLimCalBMSCoef.uwIqLimitEndSoc)
  954. {
  955. ass_stCurLimitCalBMSOut.uwIqLimitAbs = 0;
  956. }
  957. else
  958. {
  959. ass_stCurLimitCalBMSOut.uwIqLimitAbs = ass_stCurLimCalBMSCoef.uwIqLimitInitAbs;
  960. }
  961. }
  962. /**
  963. * @brief Assist function
  964. *
  965. * @param coef polynomial coefficient a, b, c, d
  966. * @param Value polynomial input value X
  967. * @param Qnum polynomial input Q type
  968. * @return UWORD polynomial output Y
  969. */
  970. void ass_voAssist(void)
  971. {
  972. /* Start Assist Jduge */
  973. if ((ass_stCalIn.uwtorquePer > ass_stCalCoef.uwAssThreshold && ass_stCalIn.uwcadancePer > 0) && (ass_stCalIn.uwGearSt > 0 && ass_stCalIn.uwGearSt != 0x22))
  974. {
  975. ass_stCalCoef.blAssistflag = TRUE;
  976. }
  977. if (ass_stCalCoef.blAssistflag == TRUE)
  978. {
  979. /* Calculate Iqref Limit */
  980. UWORD uwIqLimitTemp;
  981. ass_voAssitCurLim(ass_stCalIn.uwGearSt, ass_stCalIn.uwbikespeed, ass_stParaCong.uwCofCurMaxPu);
  982. ass_voAssistCurLimBMS(ass_stCalIn.SOCValue);
  983. uwIqLimitTemp = (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swFlxIqLimit)
  984. ? (ass_stCurLimOut.uwIqlimit < ass_stCalIn.swPwrIqLimit ? ass_stCurLimOut.uwIqlimit : ass_stCalIn.swPwrIqLimit)
  985. : (ass_stCalIn.swFlxIqLimit < ass_stCalIn.swPwrIqLimit ? ass_stCalIn.swFlxIqLimit : ass_stCalIn.swPwrIqLimit);
  986. ass_stCalCoef.uwCurrentMaxPu = (uwIqLimitTemp < ass_stCurLimitCalBMSOut.uwIqLimitAbs) ? uwIqLimitTemp : ass_stCurLimitCalBMSOut.uwIqLimitAbs;
  987. ass_stCalCoef.swCurrentmax_torAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwTorWeight) >> 12); // Q14
  988. ass_stCalCoef.swCurrentmax_cadAssPu = (SWORD)(((SLONG)ass_stCalCoef.uwCurrentMaxPu * (SWORD)ass_stParaSet.uwCadenceWeight) >> 12);
  989. /* Calculate Assist Current, Iqref*/
  990. AssitCuvApplPerVolt();
  991. /* Iqref Limit */
  992. if (ass_stCalOut.swAssitCurRef > (SWORD)ass_stCalCoef.uwCurrentMaxPu)
  993. {
  994. ass_stCalOut.swAssitCurRef = (SWORD)ass_stCalCoef.uwCurrentMaxPu;
  995. }
  996. else if(ass_stCalOut.swAssitCurRef < -(SWORD)ass_stCalCoef.uwCurrentMaxPu)
  997. {
  998. ass_stCalOut.swAssitCurRef = -(SWORD)ass_stCalCoef.uwCurrentMaxPu;
  999. }
  1000. else
  1001. {
  1002. //do nothing
  1003. }
  1004. }
  1005. else
  1006. {
  1007. ass_stCalOut.swAssitCurRef = 0;
  1008. }
  1009. }
  1010. /**
  1011. * @brief
  1012. *
  1013. * @param
  1014. * @return
  1015. */
  1016. void ass_voMoveAverageFilter(MAF_IN *in)
  1017. {
  1018. in->slSum -= in->swBuffer[in->uwIndex];
  1019. in->swBuffer[in->uwIndex] = in->swValue;
  1020. in->slSum += (SLONG)in->swValue;
  1021. if (!in->blSecFlag)
  1022. {
  1023. in->slAverValue = in->slSum / ((SLONG)in->uwIndex + (SWORD)1);
  1024. }
  1025. else
  1026. {
  1027. in->slAverValue = in->slSum / (SLONG)in->uwLength;
  1028. }
  1029. in->uwIndex++;
  1030. if (in->uwIndex >= in->uwLength)
  1031. {
  1032. in->blSecFlag = TRUE;
  1033. in->uwIndex = 0;
  1034. }
  1035. }
  1036. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1037. {
  1038. UWORD i;
  1039. in->uwIndex = 0;
  1040. in->slSum = 0;
  1041. in->blSecFlag = FALSE;
  1042. for (i = 0; i < 64; i++)
  1043. {
  1044. in->swBuffer[i] = 0;
  1045. }
  1046. }