adc.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "Temp.h"
  28. #include "api.h"
  29. #include "api_rt.h"
  30. #ifdef RUN_ARCH_SIM
  31. #include "test_user.h"
  32. #endif
  33. /************************************************************************
  34. Constant Table:
  35. *************************************************************************/
  36. /************************************************************************
  37. Exported Functions:
  38. *************************************************************************/
  39. /***************************************************************
  40. Function: adc_voCalibration;
  41. Description: Get phase A and B current zero point, other A/D sample value
  42. Call by: main() before InitADC;
  43. Input Variables: N/A
  44. Output/Return Variables: ADCTESTOUT
  45. Subroutine Call: N/A
  46. Reference: N/A
  47. ****************************************************************/
  48. #ifdef RUN_ARCH_SIM
  49. #else
  50. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  51. {
  52. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  53. {
  54. if (!hw_blChrgOvrFlg)
  55. {
  56. hw_voCharge();
  57. }
  58. else
  59. {
  60. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  61. {
  62. ULONG samplingTick[2];
  63. samplingTick[0]=HW_HHHPWM_PERIOD;
  64. samplingTick[1]=129;
  65. iPwm_SyncMultiSamplingCountUp(0, &samplingTick[0], 2);
  66. pwm_stGenOut.blSampleCalibFlag = TRUE;
  67. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  68. {
  69. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH];
  70. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  71. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  72. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  73. out1->uwADCCalibCt++;
  74. }
  75. else
  76. {
  77. hw_voPWMInit(); // mos up charge and adc calib over; pwm off
  78. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  79. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  80. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  81. out1->ulIaRegSum = 0;
  82. out1->ulIbRegSum = 0;
  83. out1->ulIcRegSum = 0;
  84. pwm_stGenOut.blSampleCalibFlag = FALSE;
  85. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> ADC_CALIB_INDEX);
  86. out1->ulIdcRegSum = 0;
  87. out1->uwADCCalibCt = 0;
  88. out1->blADCCalibFlg = TRUE;
  89. out2->uwADCCalibCt = 0;
  90. out2->blADCCalibFlg = TRUE;
  91. }
  92. }
  93. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  94. {
  95. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  96. {
  97. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] + adc_uwADDMAPhase2;
  98. out1->uwADCCalibCt++;
  99. }
  100. else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  101. {
  102. out2->uwADCCalibCt++;
  103. }
  104. else
  105. {
  106. hw_voPWMInit();
  107. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1));
  108. out1->ulIdcRegSum = 0;
  109. out1->uwADCCalibCt = 0;
  110. out1->blADCCalibFlg = TRUE;
  111. out2->uwADCCalibCt = 0;
  112. out2->blADCCalibFlg = TRUE;
  113. }
  114. }
  115. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  116. {
  117. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  118. {
  119. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  120. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  121. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  122. out1->uwADCCalibCt++;
  123. }
  124. else
  125. {
  126. hw_voPWMInit();
  127. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  128. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  129. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  130. out1->ulIaRegSum = 0;
  131. out1->ulIbRegSum = 0;
  132. out1->ulIcRegSum = 0;
  133. out1->uwADCCalibCt = 0;
  134. out1->blADCCalibFlg = TRUE;
  135. out2->uwADCCalibCt = 0;
  136. out2->blADCCalibFlg = TRUE;
  137. }
  138. }
  139. else
  140. {
  141. //do noting
  142. }
  143. }
  144. }
  145. }
  146. #endif
  147. /***************************************************************
  148. Function: adc_voSample;
  149. Description: Get three-phase current value after zero point and gain process
  150. Call by: functions in TBC;
  151. Input Variables: ADCIABFIXCOF
  152. Output/Return Variables: ADCTESTOUT
  153. Subroutine Call:
  154. Reference: N/A
  155. ****************************************************************/
  156. void adc_voSampleDown(const ADC_COF *cof, ADC_DOWN_OUT *out) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  157. {
  158. UWORD uwIpeakPu;
  159. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  160. {
  161. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  162. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  163. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  164. out->slSampIaPu = -(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  165. out->slSampIbPu = -(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  166. out->slSampIcPu = -(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  167. out->swIaPu = (SWORD)((out->slSampIaPu * (SLONG)cof->uwCalibcoef) >> 10);
  168. out->swIbPu = (SWORD)((out->slSampIbPu * (SLONG)cof->uwCalibcoef) >> 10);
  169. out->swIcPu = (SWORD)((out->slSampIcPu * (SLONG)cof->uwCalibcoef) >> 10);
  170. }
  171. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  172. {
  173. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  174. /* Register value */
  175. out->uwFirstCurREG = iAdc_GetResultPointer(2)[HW_ADC_IDC_CH]; // Q12
  176. //out->uwSecondCurREG = adc_uwADDMAPhase2; // Q12
  177. tmp_swIphase1 = (SWORD)out->uwFirstCurREG - (SWORD)cof->uwIdcOffset;
  178. tmp_swIphase1 = (SWORD)((tmp_swIphase1 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  179. tmp_swIphase2 = (SWORD)cof->uwIdcOffset - (SWORD)out->uwSecondCurREG;
  180. tmp_swIphase2 = (SWORD)((tmp_swIphase2 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  181. tmp_swIphase3 = (SWORD)out->uwSecondCurREG - (SWORD)out->uwFirstCurREG;
  182. tmp_swIphase3 = (SWORD)((tmp_swIphase3 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  183. out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  184. switch (pwm_stGenOut.uwNewSectorNum)
  185. {
  186. case 1:
  187. out->swIbPu = tmp_swIphase1; // v
  188. out->swIcPu = tmp_swIphase2; //-w
  189. out->swIaPu = tmp_swIphase3; // u
  190. break;
  191. case 2:
  192. out->swIaPu = tmp_swIphase1; // u
  193. out->swIbPu = tmp_swIphase2; //-v
  194. out->swIcPu = tmp_swIphase3;
  195. break;
  196. case 3:
  197. out->swIaPu = tmp_swIphase1; // u
  198. out->swIcPu = tmp_swIphase2; //-w
  199. out->swIbPu = tmp_swIphase3;
  200. break;
  201. case 4:
  202. out->swIcPu = tmp_swIphase1; // w
  203. out->swIaPu = tmp_swIphase2; //-u
  204. out->swIbPu = tmp_swIphase3;
  205. break;
  206. case 5:
  207. out->swIbPu = tmp_swIphase1; // v
  208. out->swIaPu = tmp_swIphase2; //-u
  209. out->swIcPu = tmp_swIphase3;
  210. break;
  211. case 6:
  212. out->swIcPu = tmp_swIphase1; // w
  213. out->swIbPu = tmp_swIphase2; //-v
  214. out->swIaPu = tmp_swIphase3;
  215. break;
  216. default:
  217. out->swIaPu = 0;
  218. out->swIbPu = 0;
  219. out->swIcPu = 0;
  220. break;
  221. }
  222. }
  223. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  224. {
  225. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  226. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  227. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  228. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  229. tmp_swIphase1 = (SWORD)-(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  230. tmp_swIphase2 = (SWORD)-(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  231. tmp_swIphase3 = (SWORD)-(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  232. switch (pwm_stGenOut.uwSampleArea)
  233. {
  234. case IgnoreNone:
  235. out->swIaPu = tmp_swIphase1;
  236. out->swIbPu = tmp_swIphase2;
  237. out->swIcPu = tmp_swIphase3;
  238. break;
  239. case IgnoreA:
  240. out->swIaPu = -tmp_swIphase2 - tmp_swIphase3;
  241. out->swIbPu = tmp_swIphase2;
  242. out->swIcPu = tmp_swIphase3;
  243. break;
  244. case IgnoreB:
  245. out->swIaPu = tmp_swIphase1;
  246. out->swIbPu = -tmp_swIphase1 - tmp_swIphase3;
  247. out->swIcPu = tmp_swIphase3;
  248. break;
  249. case IgnoreC:
  250. out->swIaPu = tmp_swIphase1;
  251. out->swIbPu = tmp_swIphase2;
  252. out->swIcPu = tmp_swIphase3;
  253. break;
  254. case IgnoreAB:
  255. out->swIaPu = -tmp_swIphase3 >> 1;
  256. out->swIbPu = -tmp_swIphase3 >> 1;
  257. out->swIcPu = tmp_swIphase3;
  258. break;
  259. case IgnoreBC:
  260. out->swIaPu = tmp_swIphase1;
  261. out->swIbPu = -tmp_swIphase1 >> 1;
  262. out->swIcPu = -tmp_swIphase1 >> 1;
  263. break;
  264. case IgnoreAC:
  265. out->swIaPu = -tmp_swIphase2 >> 1;
  266. out->swIbPu = tmp_swIphase2;
  267. out->swIcPu = -tmp_swIphase2 >> 1;
  268. break;
  269. default:
  270. break;
  271. }
  272. }
  273. else
  274. {
  275. //do nothing
  276. }
  277. /* Current absolute value & max value */
  278. if ((out->swIaPu) >= 0)
  279. {
  280. out->uwIaAbsPu = (UWORD)out->swIaPu;
  281. }
  282. else
  283. {
  284. out->uwIaAbsPu = (UWORD)-out->swIaPu;
  285. }
  286. if ((out->swIbPu) >= 0)
  287. {
  288. out->uwIbAbsPu = (UWORD)out->swIbPu;
  289. }
  290. else
  291. {
  292. out->uwIbAbsPu = (UWORD)-out->swIbPu;
  293. }
  294. if ((out->swIcPu) >= 0)
  295. {
  296. out->uwIcAbsPu = (UWORD)out->swIcPu;
  297. }
  298. else
  299. {
  300. out->uwIcAbsPu = (UWORD)-out->swIcPu;
  301. }
  302. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  303. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  304. out->uwIpeakPu = uwIpeakPu;
  305. }
  306. void adc_voSampleUp(const ADC_COF *cof, ADC_UP_OUT *out)
  307. {
  308. /* Register value */
  309. out->uwVdcReg = iAdc_GetResultPointer(0)[HW_ADC_UDC_CH];
  310. out->uwU6VReg = iAdc_GetResultPointer(0)[HW_ADC_U6V_CH];
  311. out->uwU5VReg = iAdc_GetResultPointer(0)[HW_ADC_U5V_CH];
  312. out->PCBTempReg = iAdc_GetResultPointer(0)[HW_ADC_PCBTEMP_CH];
  313. out->TorqTempReg = iAdc_GetResultPointer(0)[HW_ADC_MOTTEMP_CH];
  314. out->uwU12VReg = iAdc_GetResultPointer(0)[HW_ADC_U12V_CH];
  315. out->uwThrottleReg = iAdc_GetResultPointer(0)[HW_ADC_THRO_CH];
  316. out->uwVdcPu = (UWORD)((ULONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10); // Q14=Q24-Q10
  317. /* Vdc LPF */
  318. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  319. out->uwU6VPu = (UWORD)((ULONG)out->uwU6VReg * cof->uwU6VReg2Pu >> 10); // Q14=Q24-Q10;
  320. out->uwU5VPu = (UWORD)((ULONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10); // Q14=Q24-Q10;
  321. out->uwU12VPu = (UWORD)((ULONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10); // Q14=Q24-Q10;
  322. out->MotorTempR = out->MotorTempReg * cof->swMotorTempKcof >> 10; // Q14=Q24-Q10;
  323. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  324. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  325. {
  326. switch (pwm_stGenOut.uwSingelRSampleArea)
  327. {
  328. case 0:
  329. out->swCalibIaPu = 0;
  330. out->swCalibIbPu = 0;
  331. out->swCalibIcPu = 0;
  332. break;
  333. case SampleA:
  334. out->swCalibIaPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  335. break;
  336. case SampleB:
  337. out->swCalibIbPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  338. break;
  339. case SampleC:
  340. out->swCalibIcPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  341. break;
  342. default:
  343. break;
  344. }
  345. }
  346. ////////////////// PCB TEMP//////////////////////////////////////////////////////
  347. if(out->PCBTempReg != 0)
  348. {
  349. out->PCBTempR = (UWORD)((ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER); // Q14=Q24-Q10;
  350. }
  351. PcbTempCal((SWORD)out->PCBTempR);
  352. out->PCBTemp = tmp_PcbTemp;
  353. }
  354. static SWORD adc_pvt_swSingleReg = 0;
  355. static SLONG adc_pvt_slRdsonReg = 0;
  356. static LPF_OUT adc_pvt_stRdsonCoefLpf = {.slY.sw.hi = 1024, .slY.sw.low = 0};
  357. static BOOL adc_pvt_blCalGainFlg = FALSE;
  358. static ULONG adc_pvt_ulGainTemp1 = 0;
  359. static ULONG adc_pvt_ulIaAbsPu, adc_pvt_ulIbAbsPu, adc_pvt_ulIcAbsPu, adc_pvt_ulIPeakPu;
  360. void adc_voSRCalibration(ADC_COF *cof, const ADC_UP_OUT *up_out, ADC_DOWN_OUT *down_out)
  361. {
  362. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  363. {
  364. switch (pwm_stGenOut.uwSingelRSampleArea)
  365. {
  366. case 0:
  367. break;
  368. case SampleA:
  369. if(adc_pvt_swSingleReg > up_out->swCalibIaPu)
  370. {
  371. adc_pvt_swSingleReg = up_out->swCalibIaPu;
  372. }
  373. if(adc_pvt_slRdsonReg > down_out->slSampIaPu)
  374. {
  375. adc_pvt_slRdsonReg = down_out->slSampIaPu;
  376. }
  377. break;
  378. case SampleB:
  379. if(adc_pvt_swSingleReg > up_out->swCalibIbPu)
  380. {
  381. adc_pvt_swSingleReg = up_out->swCalibIbPu;
  382. }
  383. if(adc_pvt_slRdsonReg > down_out->slSampIbPu)
  384. {
  385. adc_pvt_slRdsonReg = down_out->slSampIbPu;
  386. }
  387. break;
  388. case SampleC:
  389. if(adc_pvt_swSingleReg > up_out->swCalibIcPu)
  390. {
  391. adc_pvt_swSingleReg = up_out->swCalibIcPu;
  392. }
  393. if(adc_pvt_slRdsonReg > down_out->slSampIcPu)
  394. {
  395. adc_pvt_slRdsonReg = down_out->slSampIcPu;
  396. }
  397. break;
  398. default:
  399. break;
  400. }
  401. adc_pvt_blCalGainFlg = TRUE;
  402. }
  403. else
  404. {
  405. ULONG ulOverflowCurPu = (ULONG)(4095 - cof->uwIaOffset) * cof->uwCurReg2Pu >> 10;
  406. if(scm_uwSpdFbkLpfAbsPu < 2500)
  407. {
  408. adc_pvt_ulIaAbsPu = abs(down_out->slSampIaPu);
  409. adc_pvt_ulIbAbsPu = abs(down_out->slSampIbPu);
  410. adc_pvt_ulIcAbsPu = abs(down_out->slSampIcPu);
  411. adc_pvt_ulIPeakPu = adc_pvt_ulIaAbsPu > adc_pvt_ulIbAbsPu ? adc_pvt_ulIaAbsPu : adc_pvt_ulIbAbsPu;
  412. down_out->ulISamplePeakPu = adc_pvt_ulIcAbsPu > adc_pvt_ulIPeakPu ? adc_pvt_ulIcAbsPu : adc_pvt_ulIPeakPu;
  413. if(down_out->ulISamplePeakPu > 32767)
  414. {
  415. adc_pvt_ulGainTemp1 = 780; ///< Rdson电流采样溢出SWORD时校准系数需小于1024
  416. adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1; ///< 系数立刻变化,不经过滤波,防止down_out->swIaPu溢出
  417. }
  418. // else if(down_out->ulISamplePeakPu > 25800) ///< 25800 = 32767 / (1300 / 1024)
  419. // {
  420. // adc_pvt_ulGainTemp1 = 1024;
  421. // adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1;
  422. // }
  423. else
  424. {
  425. adc_pvt_ulGainTemp1 = 1024; ///< 允许其他数值,但大于1024需注意溢出SWORD
  426. }
  427. cof->blCalibCalFlag = FALSE;
  428. adc_pvt_blCalGainFlg = FALSE;
  429. }
  430. else
  431. {
  432. if(adc_pvt_blCalGainFlg)
  433. {
  434. if(adc_pvt_slRdsonReg != 0 && abs(adc_pvt_slRdsonReg) < ulOverflowCurPu)
  435. {
  436. adc_pvt_ulGainTemp1 = (SLONG)((SLONG)adc_pvt_swSingleReg << 10) / (SLONG)adc_pvt_slRdsonReg;
  437. }
  438. else if(abs(adc_pvt_slRdsonReg) >= ulOverflowCurPu)
  439. {
  440. adc_pvt_ulGainTemp1 = 780; ///< Rdson电流采样削顶时不再校准电流,强制输出为119A防止溢出,尽快报出过流故障
  441. adc_pvt_stRdsonCoefLpf.slY.sw.hi = (SWORD)adc_pvt_ulGainTemp1;
  442. }
  443. else
  444. {
  445. // do nothing
  446. }
  447. if(adc_pvt_ulGainTemp1 > cof->uwCalibcoefMax)
  448. {
  449. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMax;
  450. }
  451. else if(adc_pvt_ulGainTemp1 < cof->uwCalibcoefMin)
  452. {
  453. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMin;
  454. }
  455. else
  456. {
  457. //do nothing
  458. }
  459. cof->blCalibCalFlag = TRUE;
  460. adc_pvt_blCalGainFlg = FALSE;
  461. }
  462. else
  463. {
  464. adc_pvt_swSingleReg = 0;
  465. adc_pvt_slRdsonReg = 0;
  466. }
  467. }
  468. mth_voLPFilter((SWORD)adc_pvt_ulGainTemp1, &adc_pvt_stRdsonCoefLpf);
  469. cof->uwCalibcoef = adc_pvt_stRdsonCoefLpf.slY.sw.hi;
  470. }
  471. }
  472. /***************************************************************
  473. Function: adc_voSampleCoef;
  474. Description: Get other A/D sample value
  475. Call by: functions in Mainloop;
  476. Input Variables: ADCIABFIXCOF
  477. Output/Return Variables: ADCTESTOUT
  478. Subroutine Call:
  479. Reference: N/A
  480. ****************************************************************/
  481. void adc_voSampleCoef(ADC_COF *cof)
  482. {
  483. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  484. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  485. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  486. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  487. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  488. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  489. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  490. cof->uwCalibcoef = 1024;
  491. cof->uwCalibcoefMax = 2048;
  492. cof->uwCalibcoefMin = 200;
  493. cof->uwCalibCoefK = 160; // q10
  494. mth_voLPFilterCoef(1000000 / 30, FTBC_HZ, &adc_pvt_stRdsonCoefLpf.uwKx); //100Hz
  495. }
  496. /***************************************************************
  497. Function: adc_voSampleInit;
  498. Description: ADC sample initialization
  499. Call by: mn_voSoftwareInit;
  500. Input Variables: N/A
  501. Output/Return Variables: N/A
  502. Subroutine Call:
  503. Reference: N/A
  504. ****************************************************************/
  505. void adc_voSampleInit(void)
  506. {
  507. adc_stDownOut.swIaPu = 0;
  508. adc_stDownOut.swIbPu = 0;
  509. adc_stDownOut.swIcPu = 0;
  510. adc_stDownOut.uwIaAbsPu = 0;
  511. adc_stDownOut.uwIbAbsPu = 0;
  512. adc_stDownOut.uwIcAbsPu = 0;
  513. adc_stDownOut.uwIpeakPu = 0;
  514. adc_stDownOut.uwIaReg = 0;
  515. adc_stDownOut.uwIbReg = 0;
  516. adc_stDownOut.uwIcReg = 0;
  517. adc_stDownOut.uwFirstCurREG = 0;
  518. adc_stDownOut.uwSecondCurREG = 0;
  519. adc_stDownOut.uwADCSector = 0;
  520. adc_stDownOut.uwIaAvgPu = 0;
  521. adc_stDownOut.uwIbAvgPu = 0;
  522. adc_stDownOut.uwIcAvgPu = 0;
  523. adc_stDownOut.ulUaRegSum = 0;
  524. adc_stDownOut.ulUbRegSum = 0;
  525. adc_stDownOut.ulUcRegSum = 0;
  526. adc_stDownOut.ulIdcRegSum = 0;
  527. adc_stDownOut.ulIaRegSum = 0;
  528. adc_stDownOut.ulIbRegSum = 0;
  529. adc_stDownOut.ulIcRegSum = 0;
  530. adc_stDownOut.uwADCCalibCt = 0;
  531. adc_stDownOut.blADCCalibFlg = FALSE;
  532. adc_stDownOut.ulISamplePeakPu = 0;
  533. adc_stUpOut.uwVdcPu = 0;
  534. adc_stUpOut.uwVdcLpfPu = 0;
  535. adc_stUpOut.uwU6VPu = 0;
  536. adc_stUpOut.uwU5VPu = 0;
  537. adc_stUpOut.uwU12VPu = 0;
  538. adc_stUpOut.uwTrottlePu = 0;
  539. adc_stUpOut.PCBTemp = 0;
  540. adc_stUpOut.MotorTemp = 0;
  541. adc_stUpOut.uwVdcReg = 0;
  542. adc_stUpOut.uwU6VReg = 0;
  543. adc_stUpOut.uwU5VReg = 0;
  544. adc_stUpOut.uwU12VReg = 0;
  545. adc_stUpOut.uwThrottleReg = 0;
  546. adc_stUpOut.PCBTempReg = 0;
  547. adc_stUpOut.MotorTempReg = 0;
  548. adc_stUpOut.swCalibIaPu = 0;
  549. adc_stUpOut.swCalibIbPu = 0;
  550. adc_stUpOut.swCalibIcPu = 0;
  551. adc_stUpOut.uwADCCalibCt = 0;
  552. adc_stUpOut.blADCCalibFlg = FALSE;
  553. adc_stUpOut.swIPMTempCe = 0;
  554. adc_pvt_swSingleReg = 0;
  555. adc_pvt_slRdsonReg = 0;
  556. adc_pvt_stRdsonCoefLpf.slY.sw.hi = 1024;
  557. adc_pvt_stRdsonCoefLpf.slY.sw.low = 0;
  558. adc_pvt_blCalGainFlg = FALSE;
  559. adc_pvt_ulGainTemp1 = 0;
  560. adc_pvt_ulIaAbsPu = 0;
  561. adc_pvt_ulIbAbsPu = 0;
  562. adc_pvt_ulIcAbsPu = 0;
  563. adc_pvt_ulIPeakPu = 0;
  564. }
  565. /*************************************************************************
  566. Local Functions (N/A)
  567. *************************************************************************/
  568. /************************************************************************
  569. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  570. All rights reserved.
  571. *************************************************************************/
  572. #ifdef _ADCDRV_C_
  573. #undef _ADCDRV_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  574. #endif
  575. /*************************************************************************
  576. End of this File (EOF)!
  577. Do not put anything after this part!
  578. *************************************************************************/