spdctrmode.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: spdctrmode.c
  4. Partner Filename: spdctrmode.h
  5. Description: Speed control mode
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _SPDCTRMODE_C_
  20. #define _SPDCTRMODE_C_
  21. #endif
  22. /************************************************************************
  23. Included File
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "AssistCurve.h"
  28. #include "cmdgennew.h"
  29. #include "CodePara.h"
  30. #include "FSM_2nd.h"
  31. /************************************************************************
  32. Constant Table (N/A)
  33. *************************************************************************/
  34. /************************************************************************
  35. Private Variables
  36. *************************************************************************/
  37. static LPF_OUT swTmpSpdRateLpf;
  38. static SWORD swTmpSpdRate = 0;
  39. static SWORD swTmpSpdFbkPuZ1 = 0;
  40. static SWORD swSpdRateAbsPu;
  41. static SWORD swTestIqref;
  42. static UWORD DCPswitch = 0;
  43. static CRD_PARK_IN Test_U_in;
  44. static CRD_PARK_OUT Test_U_out;
  45. /*************************************************************************
  46. Exported Functions (N/A)
  47. *************************************************************************/
  48. /***************************************************************
  49. Function: scm_voSpdCtrMdInit;
  50. Description: Speed control mode initializing function
  51. Call by: rmd_voModeSchd();
  52. Input Variables: N/A
  53. Output/Return Variables: N/A
  54. Subroutine Call: ...;
  55. Reference: N/A
  56. ****************************************************************/
  57. void scm_voSpdCtrMdInit(void)
  58. {
  59. // /* PWM init */
  60. // sysctrl_voPwmInit();
  61. /*cmd handle Initial */
  62. cmd_voCmdInit();
  63. /* Current PI init */
  64. acr_voCurPIInit();
  65. /* Current decoupling init */
  66. acr_voUdqDcpInit();
  67. /* Sensorless observer init */
  68. obs_voObsInit();
  69. /* SPI position sensor init */
  70. spi_voResolverInit();
  71. /* Speed PI init */
  72. asr_voSpdPIInit();
  73. /* Flux weakening init */
  74. flx_voInit();
  75. // fw_voInit();
  76. /* Power Limit init */
  77. pwr_voPwrLimInit();
  78. /* SVPWM init */
  79. pwm_voInit();
  80. /* Dead time init */
  81. dbc_voDBCompInit();
  82. /* Contant voltage brake init */
  83. cvb_voBrakeInit();
  84. #ifdef RUN_ARCH_SIM
  85. /* switchHall init */
  86. switchhall_voInit();
  87. #endif
  88. /* Align pos startup open2clz clzloop init */
  89. align_voInit();
  90. /* Torque observer init */
  91. torqobs_voInit();
  92. /* Global variablles init */
  93. scm_stSpdFbkLpf.slY.sw.hi = 0;
  94. scm_swSpdRefPu = 0;
  95. scm_swUalphaPu = 0; // Q14
  96. scm_swUbetaPu = 0; // Q14
  97. scm_stIqLoadLpf.slY.sl = 0;
  98. scm_stIdFbkLpf.slY.sl = 0; // Id feedback LPF
  99. scm_stIqFbkLpf.slY.sl = 0; // Iq feedback LPF
  100. scm_swIdRefPu = 0; // Q14
  101. scm_swIqRefPu = 0; // Q14
  102. scm_uwAngRefPu = 0; // Q15
  103. scm_uwAngParkPu = 0; // Q15
  104. scm_uwAngIParkPu = 0; // Q15
  105. scm_swRotateDir = 1; // Direction of motor rotate
  106. scm_ulStatCt = 0; // Status hold time count
  107. scm_uwAngManuPu = 0; // Q15, Angle given manually
  108. scm_slAngManuPu = 0;
  109. scm_slDragSpdPu = 0; // Q15, Drag speed
  110. scm_slDragSpdRefPu = 0; // Q29, intermediate Drag speed
  111. scm_blCurSwitchOvrFlg = FALSE; // Current switch over flag
  112. scm_blAngSwitchOvrFlg = FALSE; // Angle switch over flag
  113. scm_uwAngSwitchK = 0; // Angle switch weight value
  114. scm_swMotorPwrInWt = 0; // unit: w, Input power of motor
  115. scm_blCoefUpdateFlg = FALSE; // Coefficient update flag
  116. scm_stSpdFbkLpf.slY.sl = 0; // Speed feedback LPF
  117. scm_uwSpdFbkLpfAbsPu = 0; // Q15, Speed feedback LPF absolute
  118. scm_swMotorPwrInPu = 0; // Q15, Input power of motor
  119. scm_stMotoPwrInLpf.slY.sl = 0; // Input power of motor after LPF
  120. scm_swMotorPwrInLpfWt = 0; // unit: 0.1w, Input power of motor after LPF
  121. scm_uwMotorPwrInAvgPu = 0; // Q15, Input power of motor after average filter
  122. scm_swIdFdbLpfPu = 0;
  123. scm_swIqFdbLpfPu = 0;
  124. scm_swUdRefPu = 0;
  125. scm_swUqRefPu = 0;
  126. scm_swUalphaFbkPu = 0;
  127. scm_swUbetaFbkPu = 0;
  128. scm_swUalphaRefPu = 0;
  129. scm_swUbetaRefPu = 0;
  130. scm_swUalphaCompPu = 0;
  131. scm_swUbetaCompPu = 0;
  132. scm_uwHfiAngZ1Pu = 0;
  133. scm_slAngSumPu = 0;
  134. scm_slAngErrPu = 0;
  135. scm_blAngSumOvrFlg = FALSE;
  136. scm_uwRunMdSw = 1;
  137. scm_ulRunMdSwCt = 0;
  138. scm_ulCloseCt = 0;
  139. scm_uwStartMd = cp_stControlPara.swStartMode;
  140. scm_uwStartMdSw = scm_uwStartMd;
  141. scm_uwInitPosMd = cp_stControlPara.swInitPosMode;
  142. scm_uwInitPosMdSw = scm_uwInitPosMd;
  143. scm_uwHfiOvrCnt = 0;
  144. scm_slIdRefPu = 0;
  145. /* Private variables init */
  146. swTmpSpdRateLpf.slY.sl = 0;
  147. swTmpSpdRate = 0;
  148. swTmpSpdFbkPuZ1 = 0;
  149. swSpdRateAbsPu = 0;
  150. swTestIqref = 0;
  151. DCPswitch = 0;
  152. }
  153. /***************************************************************
  154. Function: scm_voSpdCtrMdCoef;
  155. Description: Speed control mode TBS scheduler
  156. Call by: tbs_voIsr();
  157. Input Variables: N/A
  158. Output/Return Variables: N/A
  159. Subroutine Call: ...;
  160. Reference: N/A
  161. ****************************************************************/
  162. void scm_voSpdCtrMdCoef(void)
  163. {
  164. ULONG ulLpfTm; // unit: us
  165. SLONG slLqPu = 0;
  166. ULONG ulAccel100rpmpsPu = USER_MOTOR_100RPMPS2PU_Q29;
  167. if (ABS(scm_swIqRefPu) < mn_swIqTurn1Pu)
  168. {
  169. scm_uwLqPu = cof_uwLqPu;
  170. }
  171. else
  172. {
  173. slLqPu = mn_slLqTurn1Pu + (((SLONG)ABS(scm_swIqRefPu) - mn_swIqTurn1Pu) * mn_swKLqSat >> 10); // Q10
  174. if (slLqPu < cof_uwLqMinPu)
  175. {
  176. scm_uwLqPu = cof_uwLqMinPu;
  177. }
  178. else if (slLqPu > cof_uwLqPu)
  179. {
  180. scm_uwLqPu = cof_uwLqPu;
  181. }
  182. else
  183. {
  184. scm_uwLqPu = (UWORD)slLqPu;
  185. }
  186. }
  187. spi_stResolverCoefIn.uwFbHz = cof_uwFbHz;
  188. spi_stResolverCoefIn.uwFreqTbcHz = FTBC_HZ;
  189. spi_stResolverCoefIn.uwSpdPllWvcHz = 30; //cp_stControlPara.swObsSpdPLLBandWidthHz; // Real Value, Unit:Hz
  190. spi_stResolverCoefIn.uwSpdPllMcoef = 2; //cp_stControlPara.swObsSpdPLLM;
  191. spi_voResolverCoef(&spi_stResolverCoefIn, &spi_stResolverCoef);
  192. /* Sensorless observer coefficient calculate */
  193. obs_stObsCoefIn.uwRbOm = cof_uwRbOm; // Real Value, unit: 0.01Ohm, Resistance base
  194. obs_stObsCoefIn.uwLbHm = cof_uwLbHm; // Real Value, unit: 0.01mH, Inductance base
  195. obs_stObsCoefIn.uwFluxbWb = cof_uwFluxbWb; // Real Value, unit: 0.01mWb, Flux linkage base
  196. obs_stObsCoefIn.uwFbHz = cof_uwFbHz; // Real Value, Unit:Hz frequency base
  197. obs_stObsCoefIn.uwRsOm = cp_stMotorPara.swRsOhm; // Real Value, unit: 0.01Ohm, Resistance base
  198. obs_stObsCoefIn.uwLqHm = (UWORD)(((ULONG)scm_uwLqPu * cof_uwLbHm) >> 10); // Real Value, unit: 0.01mH, q Inductance
  199. obs_stObsCoefIn.uwLdHm = cp_stMotorPara.swLdmH; // Real Value, unit: 0.01mH, d Inductance
  200. obs_stObsCoefIn.uwFluxWb = cp_stMotorPara.swFluxWb; // Real Value, unit: 0.01mWb, Flux linkage
  201. obs_stObsCoefIn.uwFreqTbcHz = FTBC_HZ; // Real Value, Unit:Hz Tbc
  202. obs_stObsCoefIn.uwFluxDampingRatio = cp_stControlPara.swObsFluxPIDampratio; // Real Value, unit:0.1
  203. obs_stObsCoefIn.uwFluxCrossFreqHz = cp_stControlPara.swObsFluxPICrossfreHz; // Real Value, unit:Hz
  204. obs_stObsCoefIn.uwSpdPllWvcHz = cp_stControlPara.swObsSpdPLLBandWidthHz; // Real Value, Unit:Hz
  205. obs_stObsCoefIn.uwSpdPllMcoef = cp_stControlPara.swObsSpdPLLM;
  206. obs_voObsCoef(&obs_stObsCoefIn, &obs_stObsCoefPu);
  207. /* Speed PI coefficient calculate */
  208. asr_stSpdPICoefIn.uwUbVt = VBASE;
  209. asr_stSpdPICoefIn.uwIbAp = IBASE;
  210. asr_stSpdPICoefIn.uwFbHz = FBASE;
  211. asr_stSpdPICoefIn.uwFTbsHz = FTBS_HZ;
  212. asr_stSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  213. asr_stSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  214. asr_stSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  215. asr_stSpdPICoefIn.uwMcoef = cp_stControlPara.swAsrPIM;
  216. asr_stSpdPICoefIn.uwWvcHz = cp_stControlPara.swAsrPIBandwidth;
  217. asr_stSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  218. asr_voSpdPICoef(&asr_stSpdPICoefIn, &asr_stSpdPICoef);
  219. /* Torque Observe coefficient calculate */
  220. torqobs_stCoefIn.uwUbVt = VBASE;
  221. torqobs_stCoefIn.uwIbAp = IBASE;
  222. torqobs_stCoefIn.uwFbHz = FBASE;
  223. torqobs_stCoefIn.uwFTbsHz = FTBS_HZ;
  224. torqobs_stCoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  225. torqobs_stCoefIn.uwMtJm = cp_stMotorPara.swJD;
  226. torqobs_stCoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  227. torqobs_stCoefIn.uwWtcHz = 50; // cp_stControlPara.swAsrPIBandwidth;
  228. torqobs_stCoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  229. torqobs_voCoef(&torqobs_stCoefIn, &torqobs_stCoef);
  230. mth_voLPFilterCoef(1000000 / 50, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  231. /* Id PI coefficient calculate */
  232. acr_stCurIdPICoefIn.uwFbHz = FBASE;
  233. acr_stCurIdPICoefIn.uwUbVt = VBASE;
  234. acr_stCurIdPICoefIn.uwIbAp = IBASE;
  235. acr_stCurIdPICoefIn.uwLHm = cp_stMotorPara.swLdmH;
  236. acr_stCurIdPICoefIn.uwMtRsOh = cp_stMotorPara.swRsOhm;
  237. acr_stCurIdPICoefIn.uwFTbcHz = FTBC_HZ;
  238. acr_stCurIdPICoefIn.uwRaCoef = cp_stControlPara.swAcrRaCoef; // Coefficient of Active Resistance
  239. acr_stCurIdPICoefIn.uwWicHz = cp_stControlPara.swAcrPIBandwidth; // Current loop frequency bandwidth
  240. acr_voCurPICoef(&acr_stCurIdPICoefIn, &acr_stCurIdPICoef);
  241. /* Iq PI coefficient calculate */
  242. acr_stCurIqPICoefIn.uwFbHz = FBASE;
  243. acr_stCurIqPICoefIn.uwUbVt = VBASE;
  244. acr_stCurIqPICoefIn.uwIbAp = IBASE;
  245. acr_stCurIqPICoefIn.uwLHm = cp_stMotorPara.swLqmH;
  246. acr_stCurIqPICoefIn.uwMtRsOh = cp_stMotorPara.swRsOhm;
  247. acr_stCurIqPICoefIn.uwFTbcHz = FTBC_HZ;
  248. acr_stCurIqPICoefIn.uwRaCoef = cp_stControlPara.swAcrRaCoef;
  249. acr_stCurIqPICoefIn.uwWicHz = cp_stControlPara.swAcrPIBandwidth;
  250. acr_voCurPICoef(&acr_stCurIqPICoefIn, &acr_stCurIqPICoef);
  251. /* Current decoupling coefficient calculate */
  252. acr_stUdqDcpCoefIn.uwLdHm = cp_stMotorPara.swLdmH;
  253. acr_stUdqDcpCoefIn.uwLqHm = cp_stMotorPara.swLqmH;
  254. acr_stUdqDcpCoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  255. acr_stUdqDcpCoefIn.uwUbVt = VBASE;
  256. acr_stUdqDcpCoefIn.uwFbHz = FBASE;
  257. acr_stUdqDcpCoefIn.uwIbAp = IBASE;
  258. acr_voUdqDcpCoef(&acr_stUdqDcpCoefIn, &acr_stUdqDcpCoef);
  259. /* Id feedback low pass filter coef */
  260. ulLpfTm = 1000000 / cp_stControlPara.swAcrCurFbLpfFre;
  261. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIdFbkLpf.uwKx);
  262. /* Iq feedback low pass filter coef */
  263. ulLpfTm = 1000000 / cp_stControlPara.swAcrCurFbLpfFre;
  264. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stIqFbkLpf.uwKx);
  265. /* Coefficient update only once */
  266. if (!scm_blCoefUpdateFlg)
  267. {
  268. /* Deadband compensation coefficient calculate */
  269. dbc_stDbCompCoefIn.uwDeadBandTimeNs = cp_stControlPara.swIPMDeadTimeNs; // unit: ns, Dead band time
  270. dbc_stDbCompCoefIn.uwPosSwOnTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-on time at positive current
  271. dbc_stDbCompCoefIn.uwPosSwOffTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-off time at positive current
  272. dbc_stDbCompCoefIn.uwNegSwOnTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-on time at negative current
  273. dbc_stDbCompCoefIn.uwNegSwOffTimeNs = cp_stControlPara.swIPMTurnOnNs; // unit: ns, IPM switch-off time at negative current
  274. dbc_stDbCompCoefIn.ulPWMPerUs = PWM_PERIOD_US; // unit: 0.1us, PWM period
  275. dbc_stDbCompCoefIn.uwKcoefVtPerAp = cp_stControlPara.swDbcK; // Q6, Deadband compensation slope coefficient
  276. dbc_stDbCompCoefIn.uwVBaseVt = VBASE; // Q0, Vbase
  277. dbc_stDbCompCoefIn.uwIBaseAp = IBASE; // Q0, Ibase
  278. dbc_voDBCompCoef(&dbc_stDbCompCoefIn, &dbc_stDbCompCoef);
  279. /* Flux weakening coefficient calculate */
  280. flx_stCtrlCoefIn.swIdMaxAp = (SWORD)cp_stMotorPara.swIdMaxA; // Q0,unit: 0.01A
  281. flx_stCtrlCoefIn.swIdMinAp = (SWORD)cp_stMotorPara.swIdMinA; // Q0,unit: 0.01A
  282. flx_stCtrlCoefIn.uwRsOhm = cp_stMotorPara.swRsOhm; // Q0,unit: 0.1mOhm
  283. flx_stCtrlCoefIn.swIdPIOutMinAp = (SWORD)cp_stControlPara.swFwIdPIOutMin; // Q0,unit: 0.01A
  284. flx_stCtrlCoefIn.uwCharCurCrossFreqHz = cp_stControlPara.swFwCharCurCrossFre; // Q0,unit: SQRT(1/2piR)
  285. flx_stCtrlCoefIn.uwCharCurDampRatio = cp_stControlPara.swFwCharCurDampRatio; // Q0,unit: SQRT(pi/2R)
  286. flx_stCtrlCoefIn.uwIdRegKpPu = cp_stControlPara.swFwIdKpPu; // Q16,unit: A/V2
  287. flx_stCtrlCoefIn.uwIdRegKiPu = cp_stControlPara.swFwIdKiPu; // Q16,unit: A/V2
  288. flx_stCtrlCoefIn.uwPWMDutyMax = cp_stControlPara.swFwPWMMaxDuty; // Q0,%
  289. flx_stCtrlCoefIn.uwVdcLpfFreqHz = cp_stControlPara.swFwVdcLPFFre; // Q0,unit: Hz
  290. flx_stCtrlCoefIn.uwVdcMinCalcTmMs = cp_stControlPara.swFwVdcMinCalTMms; // Q0,unit: ms
  291. flx_stCtrlCoefIn.uwFwCurLimAp = cp_stMotorPara.swIpeakMaxA; // Q0,unit: 0.01A
  292. flx_stCtrlCoefIn.uwIdMinLimRatio = cp_stControlPara.swFwIdMinLimRatio; // Q0,0.01
  293. flx_stCtrlCoefIn.uwUbVt = VBASE; // Q0,unit: 0.1V, Voltage base
  294. flx_stCtrlCoefIn.uwFreqTbcHz = FTBC_HZ; // Q0
  295. flx_stCtrlCoefIn.uwIBaseAp = IBASE; // Q0,unit: 0.01A, Base Current
  296. flx_stCtrlCoefIn.uwFBaseHz = FBASE; // Q0,unit: Hz, Base Frequency
  297. flx_voCoef(&flx_stCtrlCoefIn, &flx_stCtrlCoef);
  298. // fw_stFluxWeakeningCoefInPu
  299. // fw_voFluxWeakeningCoef(fw_stFluxWeakeningCoefInPu,flx_stCtrlCoef)
  300. /* Constant vlotage brake coefficient calculate */
  301. cvb_stBrakeCoefIn.uwVdcCvbVt = cp_stControlPara.swCvbConstantVolBrakeV;
  302. cvb_stBrakeCoefIn.uwLowSpdRpm = cp_stControlPara.swCvbConstantSpdLowRpm;
  303. cvb_stBrakeCoefIn.swIqRefMaxAp = cp_stMotorPara.swIpeakMaxA;
  304. cvb_stBrakeCoefIn.swIdRefMaxAp = cp_stMotorPara.swIdMaxA;
  305. cvb_stBrakeCoefIn.swIdRefMinAp = cp_stMotorPara.swIdMinA;
  306. cvb_stBrakeCoefIn.uwVBaseVt = VBASE;
  307. cvb_stBrakeCoefIn.uwIBaseAp = IBASE;
  308. cvb_stBrakeCoefIn.uwFBaseHz = FBASE;
  309. cvb_stBrakeCoefIn.uwMotorPairs = cp_stMotorPara.swMotrPolePairs;
  310. cvb_voBrakeCoef(&cvb_stBrakeCoefIn, &cvb_stBrakeCoef);
  311. /* Speed feedback low pass filter coef */
  312. ulLpfTm = 1000000 / cp_stControlPara.swAsrSpdFbLPFFre;
  313. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stSpdFbkLpf.uwKx);
  314. /* Power limit coef */
  315. ulLpfTm = 1000000 / cp_stControlPara.swPwrLimitLPFFre;
  316. mth_voLPFilterCoef(ulLpfTm, FTBC_HZ, &scm_stMotoPwrInLpf.uwKx);
  317. pwr_stPwrLimCofIn.swPwrLimW = cp_stControlPara.swPwrLimitValWt; // Q0, unit: 0.1w, Power limit value
  318. pwr_stPwrLimCofIn.uwPwrErrW = cp_stControlPara.swPwrLimitErrWt; // Q0, unit: 0.1w, Start power limit when "VAL - ERR"
  319. pwr_stPwrLimCofIn.swIqMaxAp = cp_stMotorPara.swIpeakMaxA; // Q0, unit: 0.01A, Max phase current (peak value)
  320. pwr_stPwrLimCofIn.uwIBaseAp = IBASE; // Q0,unit: 0.01A, Base Current
  321. pwr_stPwrLimCofIn.uwUbVt = VBASE; // Q0,unit: 0.1V, Voltage base
  322. pwr_stPwrLimCofIn.uwPwrLimPIKp = cp_stControlPara.swPwrLimitKpPu;
  323. pwr_stPwrLimCofIn.uwPwrLimPIKi = cp_stControlPara.swPwrLimitKiPu;
  324. pwr_stPwrLimCofIn.uwPwrLimSTARTCe = cp_stControlPara.swAlmPwrLimitStartTempVal;
  325. pwr_stPwrLimCofIn.uwPwrLimENDCe = cp_stControlPara.swAlmOverHeatCeVal;
  326. pwr_voPwrLimCof(&pwr_stPwrLimCofIn, &pwr_stPwrLimCof);
  327. /*Accelaration&Decelaration limit*/
  328. if (ABS(scm_swSpdRefPu) < USER_MOTOR_300RPM2PU)
  329. {
  330. cmd_stCmdCoefIn.ulAccelPu = ulAccel100rpmpsPu; // Q29
  331. }
  332. else
  333. {
  334. cmd_stCmdCoefIn.ulAccelPu = ulAccel100rpmpsPu; // Q29
  335. }
  336. cmd_stCmdCoefIn.ulDecelPu = ulAccel100rpmpsPu*10; // Q29
  337. cmd_stCmdCoefIn.swBrakeSpdDeltaPu = USER_MOTOR_100RPM2PU;
  338. cmd_voCmdCoef(&cmd_stCmdCoefIn, &cmd_stCmdCoef);
  339. pwm_stGenCoefIn.uwPWMDutyMax = cp_stControlPara.swPWMMaxDuty;
  340. pwm_stGenCoefIn.uwPWM7To5Duty = cp_stControlPara.swPWM7to5Duty;
  341. pwm_stGenCoefIn.uwPWMMinSample1Pu = cp_stControlPara.swPWMMinSampleDuty1;
  342. pwm_stGenCoefIn.uwPWMMinSample2Pu = cp_stControlPara.swPWMMinSampleDuty2;
  343. pwm_stGenCoefIn.uwPWMMinSample3Pu = cp_stControlPara.swPWMMinSampleDuty3;
  344. pwm_stGenCoefIn.uwSampleSteadyPu = cp_stControlPara.swPWMSampleToSteady;
  345. pwm_stGenCoefIn.uwSingelResisSamplePu = cp_stControlPara.swPWMSampleSigR;
  346. pwm_stGenCoefIn.uwOvmNo = cp_stControlPara.swPWMOverMdlMode;
  347. pwm_stGenCoefIn.uwPWMPd = HW_INIT_PWM_PERIOD;
  348. pwm_voGenCoef(&pwm_stGenCoefIn, &pwm_stGenCoef);
  349. scm_uwAcrLimCof = (UWORD)((ULONG)cp_stControlPara.swPWMMaxDuty * cp_stControlPara.uwAcrCurOutLim / 1000); // Q15
  350. scm_uwUdcpLimCof = (UWORD)((ULONG)cp_stControlPara.swPWMMaxDuty * cp_stControlPara.uwAcrUdcpOutLim / 1000); // Q15
  351. }
  352. }
  353. /***************************************************************
  354. Function: scm_voSpdCtrMdTbs;
  355. Description: Speed control mode TBS scheduler
  356. Call by: tbs_voIsr();
  357. Input Variables: N/A
  358. Output/Return Variables: N/A
  359. Subroutine Call: ...;
  360. Reference: N/A
  361. ****************************************************************/
  362. void scm_voSpdCtrMdTbs(void)
  363. {
  364. SWORD swIqLowerPu;
  365. /* Speed feedback LPF */
  366. if(cp_stFlg.ThetaGetModelSelect == ANG_OBSERVER)
  367. {
  368. mth_voLPFilter(obs_stObsOutPu.swElecFreqPu, &scm_stSpdFbkLpf);
  369. }
  370. else if(cp_stFlg.ThetaGetModelSelect == ANG_RESOLVER)
  371. {
  372. mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stSpdFbkLpf);
  373. }
  374. else if(cp_stFlg.ThetaGetModelSelect == ANG_SWITCHHALL)
  375. {
  376. scm_stSpdFbkLpf.slY.sw.hi = switchhall_stOut.swLowSpdLpfPu;
  377. }
  378. else
  379. {
  380. //do noting
  381. }
  382. /* Speed feedback Absolute */
  383. scm_uwSpdFbkLpfAbsPu = (UWORD)ABS(scm_stSpdFbkLpf.slY.sw.hi);
  384. /*============================================================
  385. Speed command generator to generate speed ramp
  386. =============================================================*/
  387. if(curSpeed_state.state == ClzLoop || curSpeed_state.state == Open2Clz)
  388. {
  389. cmd_stCmdIn.swSpdCmdRpm = (SWORD)uart_slSpdRefRpm;
  390. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  391. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  392. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  393. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  394. }
  395. else if (curSpeed_state.state == StartUp)
  396. {
  397. SWORD tempSpeed = 0;
  398. tempSpeed = cp_stControlPara.swDragSpdHz * 60 / cp_stMotorPara.swMotrPolePairs;
  399. if(cp_stFlg.RunModelSelect == ClZLOOP)
  400. {
  401. if(uart_slSpdRefRpm>0)
  402. {
  403. cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  404. }
  405. else
  406. {
  407. cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  408. }
  409. }
  410. else if(cp_stFlg.RunModelSelect == VFContorl || cp_stFlg.RunModelSelect == IFContorl)
  411. {
  412. if(cp_stFlg.RotateDirectionSelect == ForwardRotate)
  413. {
  414. cmd_stCmdIn.swSpdCmdRpm = tempSpeed;
  415. }
  416. else
  417. {
  418. cmd_stCmdIn.swSpdCmdRpm = -tempSpeed;
  419. }
  420. }
  421. else
  422. {
  423. //do noting
  424. }
  425. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  426. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  427. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  428. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  429. }
  430. else
  431. {
  432. cmd_stCmdIn.swSpdCmdRpm = 0;
  433. cmd_stCmdIn.swSpdNowPu = scm_stSpdFbkLpf.slY.sw.hi;
  434. cmd_voCmdOut(&cmd_stCmdIn, &cmd_stCmdCoef, &cmd_stCmdOut);
  435. scm_swRotateDir = cmd_stCmdOut.swNewCmdDir;
  436. scm_swSpdRefPu = cmd_stCmdOut.swIntRefPu; // cmd_stCmdGenOut.Out.swSpdRefPu;
  437. }
  438. /*=======================================================================
  439. Speed PI Controller
  440. =======================================================================*/
  441. asr_stSpdPIIn.swSpdRefPu = scm_swSpdRefPu; // Q15
  442. asr_stSpdPIIn.swSpdFdbPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  443. if(curSpeed_state.state != ClzLoop)
  444. {
  445. swIqLowerPu = flx_stCtrlOut.swIqLimPu;
  446. }
  447. else
  448. {
  449. swIqLowerPu = (SWORD)((flx_stCtrlOut.swIqLimPu < ABS(pwr_stPwrLimOut2.swIqLimPu)) ? flx_stCtrlOut.swIqLimPu : ABS(pwr_stPwrLimOut2.swIqLimPu));
  450. }
  451. if (scm_swRotateDir > 0)
  452. {
  453. asr_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  454. asr_stSpdPIIn.swIqMinPu = -swIqLowerPu;
  455. }
  456. else
  457. {
  458. asr_stSpdPIIn.swIqMaxPu = swIqLowerPu;
  459. asr_stSpdPIIn.swIqMinPu = -swIqLowerPu;
  460. }
  461. asr_voSpdPI(&asr_stSpdPIIn, &asr_stSpdPICoef, &asr_stSpdPIOut);
  462. /* Torque observe */
  463. // if (scm_swRotateDir > 0)
  464. // {
  465. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  466. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  467. // }
  468. // else
  469. // {
  470. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  471. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  472. // }
  473. // torqobs_stCalIn.swIqfbkPu = scm_swIqFdbLpfPu;
  474. // torqobs_stCalIn.swSpdPu = spi_stResolverOut.swSpdFbkPu;
  475. // torqobs_voCal(&torqobs_stCalIn, &torqobs_stCoef, &torqobs_stCalOut);
  476. // mth_voLPFilter(torqobs_stCalOut.swIqLoadPu, &scm_stIqLoadLpf);
  477. // swCurRefrompu = asr_stSpdPIOut.swIqRefPu - scm_stIqLoadLpf.slY.sw.hi;
  478. // if (swCurRefrompu > swIqLowerPu)
  479. // {
  480. // swCurRefrompu = swIqLowerPu;
  481. // }
  482. // else if (swCurRefrompu < -swIqLowerPu)
  483. // {
  484. // swCurRefrompu = -swIqLowerPu;
  485. // }
  486. // else
  487. // {}
  488. swCurRefrompu = asr_stSpdPIOut.swIqRefPu;
  489. curSpeed_state.Tbs_hook();
  490. }
  491. void scm_voTorqCtrMdTbs(void)
  492. {
  493. SWORD swIqLowerPu;
  494. /* Speed feedback LPF */
  495. if(cp_stFlg.ThetaGetModelSelect == ANG_OBSERVER)
  496. {
  497. mth_voLPFilter(obs_stObsOutPu.swElecFreqPu, &scm_stSpdFbkLpf);
  498. }
  499. else if(cp_stFlg.ThetaGetModelSelect == ANG_RESOLVER)
  500. {
  501. mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stSpdFbkLpf);
  502. }
  503. else if(cp_stFlg.ThetaGetModelSelect == ANG_SWITCHHALL)
  504. {
  505. scm_stSpdFbkLpf.slY.sw.hi = switchhall_stOut.swLowSpdLpfPu;
  506. }
  507. else
  508. {
  509. //do noting
  510. }
  511. /* Speed feedback Absolute */
  512. scm_uwSpdFbkLpfAbsPu = (UWORD)ABS(scm_stSpdFbkLpf.slY.sw.hi);
  513. /* Current limit value */
  514. swIqLowerPu = (SWORD)((flx_stCtrlOut.swIqLimPu < ABS(pwr_stPwrLimOut2.swIqLimPu)) ? flx_stCtrlOut.swIqLimPu : ABS(pwr_stPwrLimOut2.swIqLimPu));
  515. /* Torque observer */
  516. // if (scm_swRotateDir > 0)
  517. // {
  518. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  519. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  520. // }
  521. // else
  522. // {
  523. // torqobs_stCalIn.swIqMaxPu = swIqLowerPu;
  524. // torqobs_stCalIn.swIqMinPu = -swIqLowerPu;
  525. // }
  526. // torqobs_stCalIn.swIqfbkPu = scm_swIqFdbLpfPu;
  527. // torqobs_stCalIn.swSpdPu = spi_stResolverOut.swSpdFbkPu;
  528. // torqobs_voCal(&torqobs_stCalIn, &torqobs_stCoef, &torqobs_stCalOut);
  529. // mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  530. // mth_voLPFilter((torqobs_stCalOut.swIqLoadPu + scm_swIqFdbLpfPu), &scm_stIqLoadLpf);
  531. /* Speed fluctuation compensation */
  532. mth_voLPFilterCoef(1000000 / 50, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  533. mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stIqLoadLpf);
  534. scm_swSpdFbkCompPu = spi_stResolverOut.swSpdFbkPu - scm_stIqLoadLpf.slY.sw.hi;
  535. swTmpSpdRate = (SLONG)scm_swSpdFbkCompPu * ass_stParaSet.uwSpeedAssistSpdRpm >> 11;
  536. mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &swTmpSpdRateLpf.uwKx);
  537. mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  538. // swTmpSpdRateLpf.slY.sw.hi = swTmpSpdRate;
  539. /* Torque Calculate */
  540. // swTmpSpdRate = spi_stResolverOut.swSpdFbkPu - swTmpSpdFbkPuZ1; //Q15
  541. // mth_voLPFilterCoef(1000000 / 30, FTBS_HZ, &swTmpSpdRateLpf.uwKx); //30Hz,TBS
  542. // mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  543. // swTmpSpdFbkPuZ1 = spi_stResolverOut.swSpdFbkPu;
  544. // scm_swSpdFbkCompPu = scm_stSpdFbkLpf.slY.sw.hi + (SLONG)swTmpSpdRateLpf.slY.sw.hi * FTBS_HZ / 30; //30Hz,TBS
  545. // mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &scm_stIqLoadLpf.uwKx);
  546. // mth_voLPFilter(spi_stResolverOut.swSpdFbkPu, &scm_stIqLoadLpf);
  547. // scm_swSpdFbkCompPu = spi_stResolverOut.swSpdFbkPu - scm_stIqLoadLpf.slY.sw.hi;
  548. //
  549. // swTmpSpdRate = (SLONG)scm_swSpdFbkCompPu * ass_stParaSet.uwSpeedAssistSpdRpm >> 11; // 系数 = J/Tlpf/Pesi
  550. //
  551. //// mth_voLPFilterCoef(1000000 / 250, FTBS_HZ, &swTmpSpdRateLpf.uwKx);
  552. //// mth_voLPFilter(swTmpSpdRate, &swTmpSpdRateLpf);
  553. // swTmpSpdRateLpf.slY.sw.hi = swTmpSpdRate;
  554. //
  555. /* Iqref Compensation */
  556. if(((uart_swTorqRefNm < -200)||(uart_swTorqRefNm > 200)) && (Ass_FSM !=Spd2Torq) && (Ass_FSM !=SpeedAssit))
  557. {
  558. /* Torque Calculate */
  559. //swTestIqref = uart_swTorqRefNm - (((SLONG)swTmpSpdRateLpf.slY.sw.hi * cof_uwJmPu * 2 << 11) / cof_uwFluxPu); //Q15+Q0+Q11-Q12=Q14
  560. /* Speed fluctuation compensation*/
  561. swTestIqref = uart_swTorqRefNm - swTmpSpdRateLpf.slY.sw.hi;
  562. /* Torgque observer */
  563. // swTestIqref = uart_swTorqRefNm - scm_stIqLoadLpf.slY.sw.hi;
  564. }
  565. else
  566. {
  567. swTestIqref = uart_swTorqRefNm;
  568. }
  569. /* Current limit */
  570. if (swTestIqref > swIqLowerPu)
  571. {
  572. swTestIqref = swIqLowerPu;
  573. }
  574. else if (swTestIqref < -swIqLowerPu)
  575. {
  576. swTestIqref = -swIqLowerPu;
  577. }
  578. else
  579. {
  580. //do noting
  581. }
  582. swCurRefrompu = swTestIqref;
  583. /* 3rd FSM*/
  584. curSpeed_state.Tbs_hook();
  585. }
  586. /***************************************************************
  587. Function: scm_voSpdCtrMdUpTbc;
  588. Description: Speed control mode TBC scheduler
  589. Call by: tbc_voIsr();
  590. Input Variables: N/A
  591. Output/Return Variables: N/A
  592. Subroutine Call: ...;
  593. Reference: N/A
  594. ****************************************************************/
  595. void scm_voSpdCtrMdUpTbc(void)
  596. {
  597. /*=======================================================================
  598. Max voltage of current PI out
  599. =======================================================================*/
  600. scm_swVsLimPu = (SWORD)((SWORD)adc_stUpOut.uwVdcLpfPu * (SLONG)scm_uwAcrLimCof >> 15); // Q14+Q15-Q15=Q14
  601. scm_swVsDcpLimPu = (SWORD)((SWORD)adc_stUpOut.uwVdcLpfPu * (SLONG)scm_uwUdcpLimCof >> 15); // Q14+Q15-Q15=Q14
  602. /*=======================================================================
  603. Voltage get
  604. =======================================================================*/
  605. /* Get Ualpha & Ubeta from command voltage */
  606. scm_swUalphaPu = pwm_stGenOut.swUalphaPu - scm_swUalphaCompPu; // Q14
  607. scm_swUbetaPu = pwm_stGenOut.swUbetaPu - scm_swUbetaCompPu; // Q14
  608. /*=======================================================================
  609. Startup control FSM
  610. =======================================================================*/
  611. scm_voSpdCtrMdFSM();
  612. curSpeed_state.Tbcup_hook();
  613. }
  614. /***************************************************************
  615. Function: scm_voSpdCtrMdTbc;
  616. Description: Speed control mode TBC scheduler
  617. Call by: tbc_voIsr();
  618. Input Variables: N/A
  619. Output/Return Variables: N/A
  620. Subroutine Call: ...;
  621. Reference: N/A
  622. ****************************************************************/
  623. void scm_voSpdCtrMdDownTbc(void)
  624. {
  625. /*=======================================================================
  626. Clark transformation for phase current
  627. =======================================================================*/
  628. crd_stClarkIn.swAPu = adc_stDownOut.swIaPu; // Q14
  629. crd_stClarkIn.swBPu = adc_stDownOut.swIbPu; // Q14
  630. crd_stClarkIn.swCPu = adc_stDownOut.swIcPu; // Q14
  631. crd_voClark(&crd_stClarkIn, &crd_stCurClarkOut);
  632. /*=======================================================================
  633. Code Of spdFSM
  634. =======================================================================*/
  635. curSpeed_state.Tbcdown_hook();
  636. /*=======================================================================
  637. Current loop control
  638. =======================================================================*/
  639. /* Get Id & Iq for current PI control */
  640. /*=======================================================================
  641. Park transformation for current
  642. =======================================================================*/
  643. crd_stParkIn.swAlphaPu = crd_stCurClarkOut.swAlphaPu; // Q14
  644. crd_stParkIn.swBetaPu = crd_stCurClarkOut.swBetaPu; // Q14
  645. crd_stParkIn.uwThetaPu = scm_uwAngParkPu; // Q15
  646. crd_voPark(&crd_stParkIn, &crd_stCurParkOut);
  647. /*=======================================================================
  648. Current feedback LPF
  649. =======================================================================*/
  650. mth_voLPFilter(crd_stCurParkOut.swDPu, &scm_stIdFbkLpf);
  651. mth_voLPFilter(crd_stCurParkOut.swQPu, &scm_stIqFbkLpf);
  652. scm_swIdFdbLpfPu = scm_stIdFbkLpf.slY.sw.hi;
  653. scm_swIqFdbLpfPu = scm_stIqFbkLpf.slY.sw.hi;
  654. /*=======================================================================
  655. Calculate input power of motor
  656. =======================================================================*/
  657. scm_swMotorPwrInPu = (SWORD)(((SLONG)Test_U_out.swDPu * scm_swIdFdbLpfPu + (SLONG)Test_U_out.swQPu * scm_swIqFdbLpfPu) >> 13); // Q14+Q14-Q13=Q15
  658. mth_voLPFilter(scm_swMotorPwrInPu, &scm_stMotoPwrInLpf);
  659. scm_swMotorPwrInLpfWt = (SWORD)(scm_stMotoPwrInLpf.slY.sw.hi * (SLONG)cof_uwPbWt >> 15); // unit: 0.1w
  660. /*=======================================================================
  661. Id current PI control
  662. =======================================================================*/
  663. //DCPswitch = 0; //0 with forwardFeedBack 1 without forwardFeedBack
  664. acr_stCurIdPIIn.swCurRefPu = scm_swIdRefPu; // Q14
  665. acr_stCurIdPIIn.swCurFdbPu = scm_swIdFdbLpfPu;
  666. if (DCPswitch == 1)
  667. {
  668. acr_stCurIdPIIn.swUmaxPu = scm_swVsDcpLimPu; // Q14
  669. acr_stCurIdPIIn.swUminPu = -scm_swVsDcpLimPu; // Q14
  670. }
  671. else if (DCPswitch == 0)
  672. {
  673. acr_stCurIdPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  674. acr_stCurIdPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  675. // acr_stCurIdPIIn.swUmaxPu = scm_swVsLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  676. // acr_stCurIdPIIn.swUminPu = -scm_swVsLimPu - acr_stUdqDcpOut.swUdPu; // Q14
  677. }
  678. else
  679. {
  680. //do noting
  681. }
  682. acr_voCurPI(&acr_stCurIdPIIn, &acr_stCurIdPICoef, &acr_stCurIdPIOut);
  683. /*=======================================================================
  684. Iq current PI control
  685. =======================================================================*/
  686. acr_stCurIqPIIn.swCurRefPu = scm_swIqRefPu; // Q14
  687. acr_stCurIqPIIn.swCurFdbPu = scm_swIqFdbLpfPu;
  688. if (DCPswitch == 1)
  689. {
  690. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu; // Q14
  691. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu; // Q14
  692. }
  693. else if (DCPswitch == 0)
  694. {
  695. // if(FSM2nd_Run_state.state == Assistance)
  696. // {
  697. // acr_stCurIqPIIn.swUmaxPu = ass_stCalOut.swVoltLimitPu - acr_stUdqDcpOut.swUqPu; // Q14
  698. // acr_stCurIqPIIn.swUminPu = -ass_stCalOut.swVoltLimitPu - acr_stUdqDcpOut.swUqPu; // Q14
  699. // }
  700. // else
  701. {
  702. acr_stCurIqPIIn.swUmaxPu = scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  703. acr_stCurIqPIIn.swUminPu = -scm_swVsDcpLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  704. }
  705. // scm_swUqLimPu = mth_slSqrt(((SLONG)scm_swVsLimPu * scm_swVsLimPu) - (SLONG)(acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu) * (acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu));//Q14
  706. // acr_stCurIqPIIn.swUmaxPu = scm_swUqLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  707. // acr_stCurIqPIIn.swUminPu = -scm_swUqLimPu - acr_stUdqDcpOut.swUqPu; // Q14
  708. }
  709. else
  710. {
  711. //do noting
  712. }
  713. acr_voCurPI(&acr_stCurIqPIIn, &acr_stCurIqPICoef, &acr_stCurIqPIOut);
  714. if (DCPswitch == 1)
  715. {
  716. scm_swUqRefPu = acr_stCurIqPIOut.swURefPu; // Q14
  717. scm_swUdRefPu = acr_stCurIdPIOut.swURefPu; // Q14
  718. }
  719. else if (DCPswitch == 0)
  720. {
  721. scm_swUqRefPu = acr_stCurIqPIOut.swURefPu + acr_stUdqDcpOut.swUqPu; // Q14
  722. scm_swUdRefPu = acr_stCurIdPIOut.swURefPu + acr_stUdqDcpOut.swUdPu; // Q14
  723. }
  724. else
  725. {
  726. //do noting
  727. }
  728. /*=======================================================================
  729. IPark transformation for current
  730. =======================================================================*/
  731. crd_stIParkIn.swDPu = scm_swUdRefPu;
  732. crd_stIParkIn.swQPu = scm_swUqRefPu;
  733. crd_stIParkIn.uwThetaPu = scm_uwAngIParkPu;
  734. crd_voIPark(&crd_stIParkIn, &crd_stVltIParkOut);
  735. /*=======================================================================
  736. Deadband compensation
  737. =======================================================================*/
  738. #if (0)
  739. dbc_stDbCompIn.swIaPu = adc_stDownOut.swIaPu; // Q14
  740. dbc_stDbCompIn.swIbPu = adc_stDownOut.swIbPu; // Q14
  741. dbc_stDbCompIn.swIcPu = adc_stDownOut.swIcPu; // Q14
  742. dbc_stDbCompIn.uwVdcPu = adc_stUpOut.uwVdcLpfPu; // Q14
  743. dbc_stDbCompIn.swWsPu = scm_stSpdFbkLpf.slY.sw.hi; // Q15
  744. // dbc_stDbCompCoef.uwNegWinVoltDuty = mn_uwNegWinVoltDuty;
  745. // dbc_stDbCompCoef.uwPosLostVoltDuty = mn_uwPosLostVoltDuty;
  746. dbc_voDBComp(&dbc_stDbCompIn, &dbc_stDbCompCoef, &dbc_stDbCompOut);
  747. #endif
  748. scm_swUalphaRefPu = crd_stVltIParkOut.swAlphaPu + dbc_stDbCompOut.swUalphaCompPu; // Q14
  749. scm_swUbetaRefPu = crd_stVltIParkOut.swBetaPu + dbc_stDbCompOut.swUbetaCompPu; // Q14
  750. scm_swUalphaCompPu = dbc_stDbCompOut.swUalphaCompPu; // Q14
  751. scm_swUbetaCompPu = dbc_stDbCompOut.swUbetaCompPu; // Q14
  752. /*=======================================================================
  753. PWM generate
  754. =======================================================================*/
  755. if(cp_stFlg.RunModelSelect == VFContorl)
  756. {
  757. SWORD swVFVolAmp = 0;
  758. swVFVolAmp = (SWORD)(((SLONG)cp_stControlPara.swDragVolAp << 14) / VBASE);
  759. if(cp_stFlg.RotateDirectionSelect == ForwardRotate)
  760. {
  761. crd_stIParkIn.swDPu = 0;
  762. crd_stIParkIn.swQPu = swVFVolAmp;
  763. }
  764. else if(cp_stFlg.RotateDirectionSelect == BackwardRotate)
  765. {
  766. crd_stIParkIn.swDPu = 0;
  767. crd_stIParkIn.swQPu = -swVFVolAmp;
  768. }
  769. else
  770. {
  771. //do noting
  772. }
  773. crd_stIParkIn.uwThetaPu = scm_uwAngIParkPu;//scm_uwAngIParkPu;
  774. crd_voIPark(&crd_stIParkIn, &crd_stVltIParkOut);
  775. scm_swUalphaRefPu = crd_stVltIParkOut.swAlphaPu ;
  776. scm_swUbetaRefPu = crd_stVltIParkOut.swBetaPu;
  777. }
  778. pwm_stGenIn.swUalphaPu = scm_swUalphaRefPu; // Q14
  779. pwm_stGenIn.swUbetaPu = scm_swUbetaRefPu; // Q14
  780. pwm_stGenIn.uwVdcPu = adc_stUpOut.uwVdcLpfPu; // Q14
  781. pwm_voGen(&pwm_stGenIn, &pwm_stGenCoef, &pwm_stGenOut);
  782. iPwm_SetCompareGroupValues16(0, pwm_stGenOut.uwNewTIM1COMPR);
  783. ULONG samplingTick[2];
  784. samplingTick[0]=pwm_stGenOut.uwSigRTrig;
  785. samplingTick[1]=pwm_stGenOut.uwRdsonTrig;
  786. iPwm_SyncMultiSamplingCountUp(0, &samplingTick[0], 2);
  787. Test_U_in.swAlphaPu = pwm_stGenOut.swUalphaPu - scm_swUalphaCompPu; // Q14
  788. Test_U_in.swBetaPu = pwm_stGenOut.swUbetaPu - scm_swUbetaCompPu; // Q14
  789. Test_U_in.uwThetaPu = scm_uwAngIParkPu; // Q15
  790. crd_voPark(&Test_U_in, &Test_U_out);
  791. }
  792. /*************************************************************************
  793. Local Functions (N/A)
  794. *************************************************************************/
  795. /*************************************************************************
  796. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  797. All rights reserved.
  798. *************************************************************************/
  799. #ifdef _SPDCTRMODE_C_
  800. #undef _SPDCTRMODE_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  801. #endif
  802. /*************************************************************************
  803. End of this File (EOF)!
  804. Do not put anything after this part!
  805. *************************************************************************/