AssistCurve.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /**
  2. * @file AssistCurve.c
  3. * @author Zhang, Kai(zhangkai71@midea.com)
  4. * @brief
  5. * @version 0.1
  6. * @date 2021-11-15
  7. *
  8. * @copyright Copyright (c) 2021
  9. *
  10. */
  11. /******************************
  12. *
  13. * Include File
  14. *
  15. ******************************/
  16. #include "string.h"
  17. #include "Syspar.h"
  18. #include "user.h"
  19. #include "AssistCurve.h"
  20. #include "FSM_1st.h"
  21. #include "Cadence.h"
  22. #include "torquesensor.h"
  23. #include "flash_master.h"
  24. /******************************
  25. *
  26. * Parameter
  27. *
  28. ******************************/
  29. ASS_FSM_STATUS Ass_FSM;
  30. ASS_PER_IN ass_CalIn = TORQUE_CAL_IN_DEFAULT;
  31. ASS_PER_COEF ass_CalCoef;
  32. ASS_PER_OUT ass_CalOut;
  33. ASS_PARA_CONFIGURE ass_ParaCong;
  34. ASS_PARA_SET ass_ParaSet;
  35. ASS_CURLIM_COEF ass_CurLimCoef = ASS_LIM_DEFAULT;
  36. ASS_CURLIM_OUT ass_CurLimOut;
  37. ASS_LIMIT_ACCORDING_VOL_COF ass_CurLimCalBMSCoef;
  38. ASS_LIMIT_ACCORDING_VOL_OUT ass_CurLimitCalBMSOut;
  39. ASR_SPDPI_IN asr_stTorqSpdPIIn;
  40. ASR_SPDPI_OUT asr_stTorqSpdPIOut;
  41. ASR_SPDPI_COF asr_stTorqSpdPICoef;
  42. ASR_SPDPI_COFIN asr_stTorqSpdPICoefIn;
  43. ASS_TORQ_PI_IN ass_stTorqPIIn;
  44. ASS_TORQ_PI_OUT ass_stTorqPIOut;
  45. SWORD ass_swTorqMafBuf[64];
  46. MAF_IN ass_stTorqMafValue = {0, 32, 0, 0, ass_swTorqMafBuf, 0, FALSE};
  47. SWORD ass_swUqLimMafBuf[64];
  48. MAF_IN ass_stUqLimMafValue = {0, 64, 0, 0, ass_swUqLimMafBuf, 0, FALSE};
  49. TOR2CURRENT_CAL_COEF ass_Tor2CurCalCoef;
  50. static UWORD StartUpGainArray[5] = START_GAIN_DEFAULT;
  51. static UWORD LinerAssist[5] = ASS_LINER_TORQUE_DEFAULT;
  52. /******************************
  53. *
  54. * Function
  55. *
  56. ******************************/
  57. /**
  58. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  59. *
  60. * @param coef polynomial coefficient a, b, c, d
  61. * @param Value polynomial input value X
  62. * @param Qnum polynomial input Q type
  63. * @return UWORD polynomial output Y
  64. */
  65. static SLONG ass_slPolynomial(POLY_COEF *coef, SWORD *value, UWORD Qnum)
  66. {
  67. SLONG out;
  68. SLONG temp_a, temp_b, temp_c;
  69. /* out = a * x ^ 3 + b * x ^ 2 + c * x + d */
  70. temp_a = (((((SQWORD)coef->a * *value >> 12) * *value) >> Qnum) * *value) >> Qnum; // Qx+Q12-Q12+Qx-Qx+Qx-Qx=Qx
  71. temp_b = (((SQWORD)coef->b * *value >> 12) * *value) >> Qnum; // Qx+Q12-Q12+Qx-Qx=Qx
  72. temp_c = (SQWORD)coef->c * *value >> 12; // Qx+Q12-Q12=Qx
  73. out = temp_a + temp_b + temp_c + coef->d;
  74. out = (SLONG)out;
  75. return out;
  76. }
  77. /**
  78. * @brief Y = z*(x-h)^2 + k to Y = a*X^3 + b*X^2 + c*x +d
  79. *
  80. * @param coef original point coefficient z, h, k
  81. * @return POLY_COEF a, b, c, d
  82. */
  83. static POLY_COEF ass_stPolynomialcenter(ORIG_COEF *coef)
  84. {
  85. POLY_COEF out;
  86. /* a = 0; b = z; c = -2ha; d= ah^2 +k*/
  87. out.a = (SQWORD)0; // Q12
  88. out.b = (SQWORD)coef->z; // Q12
  89. out.c = -(((SQWORD)2 * coef->h * coef->z) >> 12); // Q12
  90. out.d = (((((SQWORD)coef->z * coef->h) >> 12) * coef->h) >> 12) + (SLONG)coef->k; // Q12
  91. return out;
  92. }
  93. /**
  94. * @brief Torque to Current when Id = 0;
  95. * Te = 1.5p*iq*fai -> iq = te/(1.5*p*fai)
  96. * @param coef polynomial coefficient a, b, c, d
  97. * @param Value polynomial input value X
  98. * @param Qnum polynomial input Q type
  99. * @return UWORD polynomial output Y
  100. */
  101. static SWORD ass_swTorq2CurPu(SWORD Tor)
  102. {
  103. SWORD CurrentPu;
  104. SWORD MotorTorqueNotPu;
  105. MotorTorqueNotPu = ((SLONG)Tor * TORQUEBASE / ass_ParaCong.uwMechRationMotor) >> 7; // Q14-Q7 = Q7 0.1Nm Not Pu
  106. CurrentPu = ((SLONG)MotorTorqueNotPu * ass_Tor2CurCalCoef.swCalCoefINV) * 10 / IBASE; // Q7+Q7 = Q14; 0.1Nm/0.01A
  107. return CurrentPu;
  108. }
  109. /**
  110. * @brief
  111. *
  112. * @param
  113. * @return
  114. */
  115. static void ass_voAssistModeSelect(void) // 上电运行一次or助力参数更新后,AssistCoef需要重新计算
  116. {
  117. UWORD TempAssit;
  118. UWORD TempGear, gear;
  119. // if (ass_ParaSet.uwAsssistSelectNum == 1) // OBC:更换成EE参数
  120. // {
  121. // TempAssit = ass_ParaCong.uwAssistSelect1;
  122. // }
  123. // else if (ass_ParaSet.uwAsssistSelectNum == 2)
  124. // {
  125. // TempAssit = ass_ParaCong.uwAssistSelect2;
  126. // }
  127. // else
  128. // {
  129. // TempAssit = ASSISTMOD_SELECT_DEFAULT;
  130. // }
  131. if (ass_ParaCong.uwStartMode == 1) // OBC:更换成EE参数
  132. {
  133. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  134. }
  135. else if (ass_ParaCong.uwStartMode == 2)
  136. {
  137. TempAssit = ass_ParaCong.uwAssistSelect1;
  138. }
  139. else if (ass_ParaCong.uwStartMode == 3)
  140. {
  141. TempAssit = ass_ParaCong.uwAssistSelect2;
  142. }
  143. else
  144. {
  145. TempAssit = ASSISTMOD_SELECT_DEFAULT;
  146. }
  147. for (gear = 0; gear < 5; gear++)
  148. {
  149. TempGear = gear * 3 + ((TempAssit >> (gear << 1)) & 0x0003);
  150. memcpy(&ass_CalCoef.uwTorqueAssGain[(gear + 1)], &flash_stPara.slTorqAssGain[TempGear], sizeof(POLY_COEF));
  151. }
  152. memcpy(&ass_CalCoef.uwCadencAsseGain[1], &flash_stPara.slCadAssGain[0], sizeof(flash_stPara.slCadAssGain));
  153. }
  154. /**
  155. * @brief Para from EE Init
  156. *
  157. * @param void
  158. * @return void
  159. */
  160. void ass_voAssitEEInit(void)
  161. {
  162. ass_ParaCong.uwWheelDiameter = BIKE_WHEEL_DIAMETER; // Q0 0.1CM
  163. ass_ParaCong.uwCadPulsePerCirc = CADENCE_PULSES_PER_CIRC;
  164. ass_ParaCong.uwMechRationMotor = 35; // Q0
  165. ass_ParaCong.uwAssistMaxSpdKmH = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  166. ass_ParaCong.uwThrottleMaxSpdKmH = BIKE_SPEED_THROTTLE_MAX;
  167. ass_ParaCong.uwNmFrontChainring = BIKE_FRONTTEETH_NMB; // front gear
  168. ass_ParaCong.uwNmBackChainring = BIKE_BACKTEETH_NMB; // min number of back gear
  169. ass_ParaCong.uwAssistSelect1 = BIKE_ASSIST_MODE1;
  170. ass_ParaCong.uwAssistSelect2 = BIKE_ASSIST_MODE2;
  171. ass_ParaCong.uwLightVoltage = BIKE_LIGHT_VOLTAGE;
  172. ass_ParaCong.swDeltDiameter = BIKE_WHEEL_SIZE_ADJUST;
  173. ass_ParaCong.uwStartMode = BIKE_START_MODE;
  174. ass_ParaCong.uwAutoPowerOffTime = BIKE_AUTO_POWER_OFF_TIME;
  175. ass_ParaSet.uwStartupCoef = 8194; // Q12 percentage Min 1-4096 1.5-6144
  176. ass_ParaSet.uwStartupCruiseCoef = 4096; // Q12 percentage Min 1-4096 1-6144
  177. ass_ParaSet.uwAssistStartNm = TORQUE_START_THRESHOLD;
  178. ass_ParaSet.uwAssistStopNm = TORQUE_STOP_THRESHOLD;
  179. ass_ParaSet.uwStartUpGainStep = 25;
  180. ass_ParaSet.uwStartUpCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  181. ass_ParaSet.uwTorLPFCadNm = CADENCE_NUMBERS_PULSES >> 1; // 0.5 circle
  182. ass_ParaSet.uwSpeedAssistSpdRpm = BIKE_SPD_MOTOR_CONSTANT_COMMAND;
  183. ass_ParaSet.uwSpeedAssistIMaxA = BIKE_SPD_MOTOR_CURRENT_MAX;
  184. ass_ParaSet.uwAssistLimitBikeSpdStart = BIKE_SPEED_IQLIMIT_THRESHOLD1;
  185. ass_ParaSet.uwAssistLimitBikeSpdStop = BIKE_SPEED_IQLIMIT_THRESHOLD2;
  186. ass_ParaSet.uwCadenceWeight = 1229; // Q12 percentage
  187. ass_ParaSet.uwTorWeight = Q12_1 ; // Q12 percentage
  188. ass_ParaSet.uwTorAssAjstGain = 4096; // Q12 percentage
  189. ass_ParaSet.uwCadenceAssAjstGain = 4094; // Q12 percentage
  190. ass_ParaSet.uwAsssistSelectNum = 1;
  191. ass_ParaSet.uwSpdRegion[0] = 8192; // Q15 1500rpm
  192. ass_ParaSet.uwSpdRegion[1] = 16384; // Q15 3000rpm
  193. ass_ParaSet.uwSpdRegion[2] = 21845; // Q15 4000rpm
  194. ass_ParaSet.uwSpdRegionGain[0] = 4094;
  195. ass_ParaSet.uwSpdRegionGain[1] = 4094;
  196. ass_ParaSet.uwSpdRegionGain[2] = 4094;
  197. }
  198. /**
  199. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  200. *
  201. * @param coef polynomial coefficient a, b, c, d
  202. * @param Value polynomial input value X
  203. * @param Qnum polynomial input Q type
  204. * @return UWORD polynomial output Y
  205. */
  206. LPF_OUT ass_pvt_stCurLpf;
  207. void ass_voAssitCoef(void)
  208. {
  209. /*状态机初始化*/
  210. Ass_FSM = StopAssit;
  211. /*电机限制初始化*/
  212. ass_ParaCong.uwCofCurMaxPu = (((ULONG)BIKE_ASS_MOTOR_CURRENT_MAX << 14) / IBASE); // Q14
  213. ass_ParaCong.uwMotorPoles = cp_stMotorPara.swMotrPolePairs;
  214. ass_ParaCong.uwCofTorMaxPu = (((ULONG)cp_stMotorPara.swTorMax << 14) / TORQUEBASE); // Q14
  215. ass_ParaCong.uwBikeAssTorMaxPu = ass_ParaCong.uwCofTorMaxPu * ass_ParaCong.uwMechRationMotor; // Q14;
  216. /*速度环参数初始化*/
  217. asr_stTorqSpdPICoefIn.uwUbVt = VBASE;
  218. asr_stTorqSpdPICoefIn.uwIbAp = IBASE;
  219. asr_stTorqSpdPICoefIn.uwFbHz = FBASE;
  220. asr_stTorqSpdPICoefIn.uwFTbsHz = EVENT_1MS_HZ;
  221. asr_stTorqSpdPICoefIn.uwPairs = cp_stMotorPara.swMotrPolePairs;
  222. asr_stTorqSpdPICoefIn.uwMtJm = cp_stMotorPara.swJD;
  223. asr_stTorqSpdPICoefIn.uwMtFlxWb = cp_stMotorPara.swFluxWb;
  224. asr_stTorqSpdPICoefIn.uwMcoef = 5;//cp_stControlPara.swAsrPIM;
  225. asr_stTorqSpdPICoefIn.uwWvcHz = 10;//cp_stControlPara.swAsrPIBandwidth;
  226. asr_stTorqSpdPICoefIn.uwRatioJm = cp_stControlPara.swAsrSpdInerRate;
  227. asr_voSpdPICoef(&asr_stTorqSpdPICoefIn, &asr_stTorqSpdPICoef);
  228. /*电流限幅计算*/
  229. ass_CurLimCalBMSCoef.uwIqLimitInitAbs = ass_ParaCong.uwCofCurMaxPu; // Q14
  230. ass_CurLimCalBMSCoef.uwIqLimitStartSoc = 35;
  231. ass_CurLimCalBMSCoef.uwIqLimitEndSoc = 0;
  232. ass_CurLimCalBMSCoef.swIqLImitK =
  233. ass_CurLimCalBMSCoef.uwIqLimitInitAbs / ((SWORD)ass_CurLimCalBMSCoef.uwIqLimitStartSoc - ass_CurLimCalBMSCoef.uwIqLimitEndSoc);
  234. /*助力曲线初始化*/
  235. ass_voAssistModeSelect();
  236. /*助力启动阈值初始化*/
  237. ass_CalCoef.uwAssThreshold = ((ULONG)ass_ParaSet.uwAssistStartNm << 14) / TORQUEBASE; // Q14
  238. ass_CalCoef.uwAssStopThreshold = ((ULONG)ass_ParaSet.uwAssistStopNm << 14) / TORQUEBASE; // Q14;
  239. /*助力系数初始化*/
  240. ass_CalCoef.StartFlag = 0;
  241. ass_CalCoef.swSmoothGain = 0; // Q12
  242. ass_CalCoef.uwStartUpTargetGain = 0; // Q12
  243. ass_CalCoef.uwStartUpGainAddStep = ass_ParaSet.uwStartUpGainStep; // 25 Q12
  244. if (ass_CalCoef.uwStartUpGainAddStep < 1)
  245. {
  246. ass_CalCoef.uwStartUpGainAddStep = 1;
  247. }
  248. if (ass_CalCoef.uwStartUpGainAddStep > 50)
  249. {
  250. ass_CalCoef.uwStartUpGainAddStep = 50;
  251. }
  252. /*设置启动到正常助力最少踏频数*/
  253. ass_CalCoef.uwStartUpTimeCadenceCnt = ass_ParaSet.uwStartUpCadNm;
  254. if (ass_CalCoef.uwStartUpTimeCadenceCnt < (CADENCE_NUMBERS_PULSES >> 3))
  255. {
  256. ass_CalCoef.uwStartUpTimeCadenceCnt = (CADENCE_NUMBERS_PULSES >> 3);
  257. }
  258. if (ass_CalCoef.uwStartUpTimeCadenceCnt > CADENCE_NUMBERS_PULSES)
  259. {
  260. ass_CalCoef.uwStartUpTimeCadenceCnt = CADENCE_NUMBERS_PULSES;
  261. }
  262. /*设置滑动平均滤波踏频数*/
  263. ass_stTorqMafValue.uwLength = ass_ParaSet.uwTorLPFCadNm;
  264. ass_CalCoef.swCadanceGain = 0;
  265. ass_CalCoef.uwSwitch1TorqThreshold = ((ULONG)TORQUE_SWITCH1_THRESHOLD << 14) / TORQUEBASE;
  266. ass_CalCoef.uwSwitch2TorqThreshold = ((ULONG)TORQUE_SWITCH2_THRESHOLD << 14) / TORQUEBASE;
  267. ass_CalCoef.ulStartupDeltInv = ((ULONG)1 << 28) / (ass_CalCoef.uwSwitch2TorqThreshold - ass_CalCoef.uwSwitch1TorqThreshold); // Q14;
  268. /*初始化计数*/
  269. ass_CalCoef.uwCadencePeriodCNT = 0;
  270. ass_CalCoef.swCadanceCNT = 0;
  271. ass_CalCoef.sw2StopCNT = 0;
  272. ass_CalCoef.swAss2SpdCNT = 0;
  273. /*配置速度环参数*/
  274. ass_CalCoef.uwSpeedConstantCommand = (((ULONG)ass_ParaSet.uwSpeedAssistSpdRpm << 15) / ((ULONG)FBASE * 60 / ass_ParaCong.uwMotorPoles));
  275. ass_CalCoef.swSpdLoopAbsCurMax = ((SWORD)ass_ParaSet.uwSpeedAssistIMaxA << 14) / IBASE;
  276. ass_CalCoef.swSpeedlimtrpm = -100;
  277. ass_CalCoef.swBikeSpeedGain = 0;
  278. /*设置电流限幅*/
  279. ass_CalCoef.uwCurrentMaxPu = ass_ParaCong.uwCofCurMaxPu;
  280. ass_CalCoef.swCurrentmax_torAssPu =((SLONG)ass_CalCoef.uwCurrentMaxPu * ass_ParaSet.uwTorWeight) >> 12; // Q14
  281. ass_CalCoef.swCurrentmax_cadAssPu = ((SLONG)ass_CalCoef.uwCurrentMaxPu * ass_ParaSet.uwCadenceWeight )>> 12; // Q14
  282. /*初始化标志*/
  283. ass_CalCoef.blAssistflag = FALSE;
  284. ass_CalOut.swTorAssistSum1 = 0;
  285. ass_CalOut.swTorAssistSum2 = 0;
  286. ass_CalOut.swTorAss2CurrentTemp = 0;
  287. ass_CalOut.swCadAss2CurrentTemp = 0;
  288. ass_CalOut.swTorAssistCurrentTemp = 0;
  289. ass_CalOut.swTorSpdLoopCurrentTemp = 0;
  290. ass_CalOut.swTorAssistCurrent = 0;
  291. ass_CalOut.swSpeedRef = 0;
  292. ass_CalOut.swCadSpd2MotSpd = 0;
  293. ass_CurLimCoef.uwLimitGain[0] = 0; // Q10 percentage of max Current
  294. ass_CurLimCoef.uwLimitGain[1] = 400;
  295. ass_CurLimCoef.uwLimitGain[2] = 682;
  296. ass_CurLimCoef.uwLimitGain[3] = 910;
  297. ass_CurLimCoef.uwLimitGain[4] = 1024;
  298. ass_CurLimCoef.uwLimitGain[5] = 1024;
  299. ass_CurLimCoef.uwSpdThresHold = 21845;
  300. /*设置车速限幅*/
  301. // ass_CurLimCoef.uwBikeSpdThresHold1 = ((SQWORD)10000 << 30) * ass_ParaSet.uwAssistLimitBikeSpdStart /
  302. // ((SQWORD)36 * 3216 * ass_ParaCong.uwWheelDiameter * FBASE); // Q20 3216 = Q10(3.1415926)
  303. // ass_CurLimCoef.uwBikeSpdThresHold2 =
  304. // ((SQWORD)10000 << 30) * ass_ParaSet.uwAssistLimitBikeSpdStop / ((SQWORD)36 * 3216 * ass_ParaCong.uwWheelDiameter * FBASE);
  305. ass_CurLimCoef.uwBikeSpdThresHold1 = ((SQWORD)1000 << 20) * ass_ParaSet.uwAssistLimitBikeSpdStart /
  306. ((SQWORD)36 * (ass_ParaCong.uwWheelDiameter + ass_ParaCong.swDeltDiameter) * FBASE); // Q20 3216 = Q10(3.1415926)
  307. ass_CurLimCoef.uwBikeSpdThresHold2 = ((SQWORD)1000 << 20) * ass_ParaSet.uwAssistLimitBikeSpdStop /
  308. ((SQWORD)36 * (ass_ParaCong.uwWheelDiameter + ass_ParaCong.swDeltDiameter) * FBASE); // Q20 3216 = Q10(3.1415926)
  309. ass_CurLimCoef.ulBikeSpdDeltInv = ((SQWORD)1 << 40) / (ass_CurLimCoef.uwBikeSpdThresHold2 - ass_CurLimCoef.uwBikeSpdThresHold1); // Q20;
  310. ass_CurLimCoef.uwBikeSpdIqLimitK =
  311. (((ULONG)ass_CurLimCoef.uwBikeSpdThresHold2 - ass_CurLimCoef.uwBikeSpdThresHold1) << 8) / ass_ParaCong.uwCofCurMaxPu; // Q28-q14 = Q14;
  312. /*设置转矩电流标定系数*/
  313. ass_Tor2CurCalCoef.uwMotorFluxWb = cp_stMotorPara.swFluxWb; // 0.001mWb
  314. ass_Tor2CurCalCoef.uwMotprPolePairs = ass_ParaCong.uwMotorPoles;
  315. ass_Tor2CurCalCoef.swCalCoefINV =
  316. (((SLONG)1 << 7) * 1000 * 1000) /
  317. (((SLONG)3 * ass_Tor2CurCalCoef.uwMotorFluxWb * ass_Tor2CurCalCoef.uwMotprPolePairs) >> 1); // Q7 Not Pu // 1/(1.5p*fai);
  318. mth_voLPFilterCoef(1000000 / 25, EVENT_1MS_HZ, &ass_pvt_stCurLpf.uwKx); //100Hz
  319. ass_pvt_stCurLpf.slY.sl = 0;
  320. }
  321. /**
  322. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  323. *
  324. * @param coef polynomial coefficient a, b, c, d
  325. * @param Value polynomial input value X
  326. * @param Qnum polynomial input Q type
  327. * @return UWORD polynomial output Y
  328. */
  329. void ass_voAssitTorqPIInit(void)
  330. {
  331. ass_stTorqPIOut.slIRefPu = 0;
  332. ass_stTorqPIOut.swErrZ1Pu = 0;
  333. ass_stTorqPIOut.swIRefPu = 0;
  334. }
  335. void ass_voAssitTorqPI(ASS_TORQ_PI_IN *in, ASS_TORQ_PI_OUT *out)
  336. {
  337. SLONG slErrPu, slDeltaErrPu;
  338. SLONG slIpPu, slIiPu;
  339. SLONG slImaxPu, slIminPu;
  340. SQWORD sqIRefPu, sqIpPu;
  341. UWORD uwKpPu = 5000, uwKitPu = 0; // uwKpPu(Q12), uwKitPu(Q15)
  342. // uwKpPu = ass_ParaSet.uwSpeedAssistIMaxA;
  343. // uwKitPu = ass_ParaSet.uwStartUpCadNm;
  344. slImaxPu = (SLONG)in->swImaxPu << 15; // Q14+Q15=Q29
  345. slIminPu = (SLONG)in->swIminPu << 15; // Q14+Q15=Q29
  346. slErrPu = in->swTorqRefPu - in->swTorqFdbPu; // Q14
  347. if (slErrPu > 32767)
  348. {
  349. slErrPu = 32767;
  350. }
  351. else if (slErrPu < -32768)
  352. {
  353. slErrPu = -32768;
  354. }
  355. else
  356. {
  357. /* Nothing */
  358. }
  359. slDeltaErrPu = slErrPu - out->swErrZ1Pu; // Q14
  360. if (slDeltaErrPu > 32767)
  361. {
  362. slDeltaErrPu = 32767;
  363. }
  364. else if (slDeltaErrPu < -32768)
  365. {
  366. slDeltaErrPu = -32768;
  367. }
  368. else
  369. {
  370. /* Nothing */
  371. }
  372. slIpPu = slDeltaErrPu * uwKpPu; // Q14+Q12=Q26
  373. sqIpPu = (SQWORD)slIpPu << 3;
  374. slIiPu = slErrPu * uwKitPu; // Q14+Q15=Q29
  375. sqIRefPu = sqIpPu + (SQWORD)slIiPu + (SQWORD)out->slIRefPu; // Q29
  376. if (sqIRefPu > slImaxPu)
  377. {
  378. out->slIRefPu = slImaxPu;
  379. }
  380. else if (sqIRefPu < slIminPu)
  381. {
  382. out->slIRefPu = slIminPu;
  383. }
  384. else
  385. {
  386. out->slIRefPu = sqIRefPu;
  387. }
  388. out->swIRefPu = out->slIRefPu >> 15; // Q29-Q15=Q14
  389. out->swErrZ1Pu = (SWORD)slErrPu;
  390. }
  391. SWORD ass_pvt_swVoltCnt=0;
  392. UWORD ass_pvt_uwTorqAccCnt=0,ass_pvt_uwTorqDecCnt=0,ass_pvt_uwSpd2TorqCnt=0;
  393. static SWORD AssitCuvApplPerVolt(void)
  394. {
  395. SWORD swCurSwitch=0;
  396. SLONG slTeTorAssitTmpPu,slTeTorAssitLinerPu,slTeCadAssitTmpPu;
  397. SWORD swTeTorAssitPu1, swTeTorAssitPu2;
  398. SWORD swTeCadAssitPu1, swTeCadAssitPu2;
  399. SWORD swTmpSpdtoTorqCur;
  400. SLONG slTmpSmoothCur;
  401. SWORD swTorqCmd1, swTorqCmd, swCadCmd;
  402. UWORD uwTorqAccStep=0,uwTorqDecStep=80;
  403. SWORD swTmpVoltPu;
  404. SLONG slSpdErr,slTmpVoltLim;
  405. SWORD swSpdKpPu = 500; //Q10
  406. ORIG_COEF stStopOrigCoef = {-100, 0, 0};
  407. POLY_COEF stStopCoef;
  408. // SLONG slTmp_a1, slTmp_b1, slTmp_c1;
  409. /* Select Torq Growth Rate by Bike Gear */
  410. if (ass_CalIn.uwGearSt == 1)
  411. {
  412. uwTorqAccStep = 50;
  413. }
  414. else if(ass_CalIn.uwGearSt == 2)
  415. {
  416. uwTorqAccStep = 100;
  417. }
  418. else if(ass_CalIn.uwGearSt == 3)
  419. {
  420. uwTorqAccStep = 120;
  421. }
  422. else if(ass_CalIn.uwGearSt == 4)
  423. {
  424. uwTorqAccStep = 150;
  425. }
  426. else if(ass_CalIn.uwGearSt == 5)
  427. {
  428. uwTorqAccStep = 150;
  429. }
  430. else
  431. {
  432. }
  433. uwTorqDecStep = 40;
  434. /* Select TorqRef: LPFTorq or MAFTorq */
  435. swTorqCmd1 = ((ULONG)ass_CalIn.uwtorque * ass_CalCoef.swTorqFilterGain >> 14) +
  436. ((ULONG)ass_CalIn.uwtorquelpf * (Q14_1 - ass_CalCoef.swTorqFilterGain) >> 14); //转矩指令滤波切换,由低通滤波到踏频相关的滑动平均滤波
  437. swTorqCmd = ((ULONG)swTorqCmd1 * ass_CalCoef.swSmoothGain) >> 12; //转矩指令斜坡
  438. if (swTorqCmd > ass_ParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  439. {
  440. swTorqCmd = ass_ParaCong.uwBikeAssTorMaxPu;
  441. }
  442. /* Assist torque Cal using Assist Curve */
  443. slTeTorAssitTmpPu = (SLONG)(ass_slPolynomial(&ass_CalCoef.uwTorqueAssGain[ass_CalIn.uwGearSt], &swTorqCmd, 14)); // Q14 转矩助力曲线
  444. slTeTorAssitLinerPu = (SLONG)(((swTorqCmd * LinerAssist[ass_CalIn.uwGearSt-1] )>> 12) + 136);
  445. if (slTeTorAssitTmpPu < slTeTorAssitLinerPu)
  446. {
  447. slTeTorAssitTmpPu = slTeTorAssitLinerPu;
  448. }
  449. else
  450. {
  451. //do nothing;
  452. }
  453. swCadCmd = (((SLONG)ass_CalIn.uwcadance * ass_CalCoef.swSmoothGain) >> 12)*10; // 踏频指令斜坡
  454. slTeCadAssitTmpPu = ((SLONG)(ass_slPolynomial(&ass_CalCoef.uwCadencAsseGain[ass_CalIn.uwGearSt], &swCadCmd, 20))) >> 6; // Q20 - Q6 = Q14 //踏频助力曲线
  455. if (slTeTorAssitTmpPu > ass_ParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  456. {
  457. slTeTorAssitTmpPu = ass_ParaCong.uwBikeAssTorMaxPu;
  458. }
  459. if (slTeCadAssitTmpPu > ass_ParaCong.uwBikeAssTorMaxPu) // 最大转矩限幅
  460. {
  461. slTeCadAssitTmpPu = ass_ParaCong.uwBikeAssTorMaxPu;
  462. }
  463. /* Select Assist Percent of Torq and Candence*/
  464. swTeTorAssitPu1 = (((SLONG)slTeTorAssitTmpPu) * ass_ParaSet.uwTorAssAjstGain) >> 12; // Q14+Q12-Q12 = Q14; 用户可设置转矩比例
  465. swTeCadAssitPu1 = (((SLONG)slTeCadAssitTmpPu) * ass_ParaSet.uwCadenceAssAjstGain) >> 12; // Q14+Q12-Q12 = Q14; 用户可设置踏频比例
  466. ass_CalOut.swTorAssistSum1 = (swTeTorAssitPu1 + swTeCadAssitPu1); // Q14
  467. /* Candance Speed to Motor Speed*/
  468. ass_CalOut.swCadSpd2MotSpd =
  469. ((SLONG)ass_CalIn.uwcadance * ass_ParaCong.uwMechRationMotor * ass_ParaCong.uwMotorPoles) >> 5; // Q20-Q5= Q15 出力时电机转速计算
  470. ass_CalCoef.uwCadencePeriodCNT = TIME_MS2CNT(((ULONG)1000 << 20) / ((ULONG)ass_CalIn.uwcadance * FBASE)); //一圈踏频时间计数
  471. /* Back EMF Cal */
  472. swTmpVoltPu = (SLONG)ass_CalOut.swCadSpd2MotSpd *(SLONG)cof_uwFluxPu >> 13;//Q15+Q12-Q13=Q14;
  473. ass_CalCoef.uwStartupGain = ass_ParaSet.uwStartupCoef ; //零速启动助力比计算
  474. ass_CalCoef.uwStartupCruiseGain = ass_ParaSet.uwStartupCruiseCoef ; //带速启动助力比计算
  475. /* Assist FSM Control */
  476. switch (Ass_FSM)
  477. {
  478. case Startup:
  479. ass_CalCoef.swSmoothGain = Q12_1;
  480. swSpdKpPu = 500; //ass_ParaSet.uwStartUpCadNm;
  481. slSpdErr = (SLONG)ass_CalOut.swCadSpd2MotSpd - (SLONG)ass_CalIn.uwSpdFbkAbsPu;
  482. /* Open Voltage Limit according SpdErr*/
  483. if(ass_CalCoef.StartFlag == 0)
  484. {
  485. slTmpVoltLim= ((slSpdErr * swSpdKpPu )>> 11) + swTmpVoltPu;
  486. if(slTmpVoltLim > scm_swVsDcpLimPu)
  487. {
  488. slTmpVoltLim = scm_swVsDcpLimPu;
  489. }
  490. else if(slTmpVoltLim <= 0)
  491. {
  492. slTmpVoltLim =0;
  493. }
  494. ass_CalOut.swVoltLimitPu = slTmpVoltLim;
  495. if(slSpdErr <= 1500 )
  496. {
  497. ass_CalCoef.StartFlag=1;
  498. }
  499. }
  500. else if(ass_CalCoef.StartFlag ==1 )
  501. {
  502. ass_CalOut.swVoltLimitPu += 3;//ass_CalCoef.uwStartUpGainAddStep;
  503. if(slSpdErr <= 100)
  504. {
  505. ass_pvt_swVoltCnt++;
  506. }
  507. else
  508. {
  509. ass_pvt_swVoltCnt--;
  510. if(ass_pvt_swVoltCnt < 0)
  511. {
  512. ass_pvt_swVoltCnt = 0;
  513. }
  514. }
  515. /* Switch to TorqueAssit FSM */
  516. if(ass_pvt_swVoltCnt > 30)
  517. {
  518. Ass_FSM = TorqueAssit;
  519. ass_CalCoef.StartFlag=0;
  520. }
  521. }
  522. /* Switch to ReduceCurrent FSM */
  523. if((ass_CalIn.uwcadancePer == 0) || (ass_CalIn.uwGearSt == 0))
  524. {
  525. /* When CandanceFreq=0 or BikeGear=0*/
  526. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  527. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  528. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  529. ass_CalCoef.swAss2SpdCNT = 0;
  530. ass_CalCoef.sw2StopCNT = 0;
  531. Ass_FSM = ReduceCurrent;
  532. }
  533. else if(ass_CalIn.uwtorquePer <= (ass_CalCoef.uwAssStopThreshold))
  534. {
  535. /* When InstantTorq < StopTorq and hold half circle */
  536. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  537. {
  538. ass_CalCoef.swAss2SpdCNT++;
  539. }
  540. if (ass_CalCoef.swAss2SpdCNT > (ass_ParaCong.uwCadPulsePerCirc >> 1))
  541. {
  542. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  543. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  544. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  545. ass_CalCoef.swAss2SpdCNT = 0;
  546. ass_CalCoef.sw2StopCNT = 0;
  547. Ass_FSM = ReduceCurrent;
  548. }
  549. }
  550. else
  551. {
  552. ass_CalCoef.swAss2SpdCNT = 0;
  553. }
  554. break;
  555. case TorqueAssit:
  556. /* Open Voltage Limit till MAX */
  557. ass_pvt_swVoltCnt += 3;
  558. if(ass_pvt_swVoltCnt > Q12_1)
  559. {
  560. ass_pvt_swVoltCnt = Q12_1;
  561. }
  562. else
  563. {
  564. }
  565. /* Reduce Voltage Limit When LPFTorq < Switch1TorqThreshold */
  566. // if(ass_CalIn.uwtorquelpf >= ass_CalCoef.uwSwitch1TorqThreshold)
  567. // {
  568. // ass_CalOut.swVoltLimitPu += ass_CalCoef.uwStartUpGainAddStep;
  569. // }
  570. // else if (ass_CalIn.uwtorquelpf <= ass_CalCoef.uwSwitch1TorqThreshold)
  571. // {
  572. // ass_CalOut.swVoltLimitPu -= ass_CalCoef.uwSpeedConstantCommand;
  573. // }
  574. // else
  575. // {}
  576. // if (ass_CalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  577. // {
  578. // ass_CalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  579. // }
  580. // else if (ass_CalOut.swVoltLimitPu <= (swTmpVoltPu + ass_ParaSet.uwStartUpCadNm))
  581. // {
  582. // ass_CalOut.swVoltLimitPu = swTmpVoltPu + ass_ParaSet.uwStartUpCadNm;
  583. // }
  584. /* Torque Clzloop Test */
  585. if (ass_CalOut.swVoltLimitPu < scm_swVsDcpLimPu)
  586. {
  587. ass_CalOut.swVoltLimitPu += ass_CalCoef.uwStartUpGainAddStep;
  588. if (ass_CalOut.swVoltLimitPu > scm_swVsDcpLimPu)
  589. {
  590. ass_CalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  591. }
  592. }
  593. /* TorqueRef Select Coef */
  594. ass_CalCoef.swTorqFilterGain += 4; // Q14 转矩滤波方式切换系数
  595. if (ass_CalCoef.swTorqFilterGain > Q14_1)
  596. {
  597. ass_CalCoef.swTorqFilterGain = Q14_1;
  598. }
  599. /* Switch to ReduceCurrent FSM */
  600. if((ass_CalIn.uwcadancePer == 0) || (ass_CalIn.uwGearSt == 0))
  601. {
  602. /* When CandanceFreq=0 or BikeGear=0*/
  603. ass_pvt_swVoltCnt=0;
  604. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  605. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  606. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  607. ass_CalCoef.swAss2SpdCNT = 0;
  608. ass_CalCoef.sw2StopCNT = 0;
  609. stStopOrigCoef.k = (SLONG)ass_CalCoef.swSmoothGain;
  610. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  611. Ass_FSM = ReduceCurrent;
  612. ass_CalOut.blTorqPIFlg = FALSE;
  613. ass_CalOut.blAssHoldFlag = FALSE;
  614. }
  615. else if(ass_CalIn.uwtorquePer <= (ass_CalCoef.uwAssStopThreshold))
  616. {
  617. /* When InstantTorq < StopTorq and hold half circle */
  618. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  619. {
  620. ass_CalCoef.swAss2SpdCNT++;
  621. }
  622. if (ass_CalCoef.swAss2SpdCNT > (ass_ParaCong.uwCadPulsePerCirc >> 1 ) || ass_CalIn.uwcadancePer == 0)
  623. {
  624. ass_pvt_uwTorqAccCnt=0;
  625. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  626. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  627. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  628. ass_CalCoef.swAss2SpdCNT = 0;
  629. ass_CalCoef.sw2StopCNT = 0;
  630. Ass_FSM = ReduceCurrent;
  631. stStopOrigCoef.k = (SLONG)ass_CalCoef.swSmoothGain;
  632. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  633. ass_CalOut.blTorqPIFlg = FALSE;
  634. ass_CalOut.blAssHoldFlag = FALSE;
  635. }
  636. }
  637. else
  638. {
  639. ass_CalCoef.swAss2SpdCNT = 0;
  640. }
  641. break;
  642. case SpeedAssit:
  643. ass_CalOut.swVoltLimitPu = scm_swVsDcpLimPu;
  644. /*电机速度指令斜坡,保证低速运行不停机*/
  645. if (ass_CalOut.swSpeedRef >= 0) //ass_CalCoef.uwSpeedConstantCommand) // Q15
  646. {
  647. ass_CalOut.swSpeedRef -= 100;
  648. }
  649. else
  650. {
  651. ass_CalOut.swSpeedRef += 10;
  652. }
  653. if(ass_CalOut.swSpeedRef < 0)
  654. {
  655. ass_CalOut.swSpeedRef = 0;
  656. }
  657. asr_stTorqSpdPIIn.swSpdRefPu = ass_CalIn.swDirection*ass_CalOut.swSpeedRef;
  658. asr_stTorqSpdPIIn.swSpdFdbPu = ass_CalIn.swSpdFbkPu; // Q15
  659. asr_stTorqSpdPIIn.swIqMaxPu = ass_CalCoef.swSpdLoopAbsCurMax; // ass_CalCoef.uwCurrentMaxPu;
  660. asr_stTorqSpdPIIn.swIqMinPu = -ass_CalCoef.swSpdLoopAbsCurMax; // ass_CalCoef.uwCurrentMaxPu;
  661. asr_voSpdPI(&asr_stTorqSpdPIIn, &asr_stTorqSpdPICoef, &asr_stTorqSpdPIOut);
  662. ass_CalOut.swTorSpdLoopCurrentTemp = abs(asr_stTorqSpdPIOut.swIqRefPu);
  663. /* Switch to StopAssit FSM */
  664. if(abs(ass_CalIn.swSpdFbkPu) < SPD_RPM2PU(200))
  665. {
  666. ass_CalCoef.sw2StopCNT = 0;
  667. ass_CalCoef.StartFlag = 0;
  668. ass_CalCoef.uwStartUpTargetGain = 0;
  669. Ass_FSM = StopAssit;
  670. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  671. stStopOrigCoef.k = 0;
  672. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  673. ass_CalCoef.swCoefStep = 0;
  674. }
  675. break;
  676. case Spd2Torq:
  677. /*加速啮合,速度指令斜坡快速追踪踏频*/
  678. if (ass_CalIn.uwSpdFbkAbsPu < ((ass_CalOut.swCadSpd2MotSpd*3) >> 1))
  679. {
  680. ass_CalOut.swSpeedRef += 100;
  681. }
  682. else
  683. {
  684. // ass_CalOut.swSpeedRef -= 4;
  685. }
  686. if (ass_CalOut.swSpeedRef > ((ass_CalOut.swCadSpd2MotSpd*3) >> 1))
  687. {
  688. ass_CalOut.swSpeedRef = ((ass_CalOut.swCadSpd2MotSpd*3) >> 1);
  689. }
  690. asr_stTorqSpdPIIn.swSpdRefPu = ass_CalIn.swDirection*ass_CalOut.swSpeedRef;
  691. asr_stTorqSpdPIIn.swSpdFdbPu = ass_CalIn.swSpdFbkPu; // Q15
  692. asr_stTorqSpdPIIn.swIqMaxPu = ass_CalCoef.swSpdLoopAbsCurMax; // Q14
  693. asr_stTorqSpdPIIn.swIqMinPu = -ass_CalCoef.swSpdLoopAbsCurMax; // Q14
  694. asr_voSpdPI(&asr_stTorqSpdPIIn, &asr_stTorqSpdPICoef, &asr_stTorqSpdPIOut);
  695. ass_CalOut.swTorSpdLoopCurrentTemp = abs(asr_stTorqSpdPIOut.swIqRefPu);
  696. /*啮合后切换至带速启动*/
  697. ass_pvt_uwSpd2TorqCnt++;
  698. if (ass_pvt_uwSpd2TorqCnt > 150)//ass_CalIn.uwSpdFbkAbsPu > ass_CalOut.swCadSpd2MotSpd )// && ass_CalIn.uwtorquePer > ass_CalCoef.uwAssStopThreshold) // Q15
  699. {
  700. ass_CalCoef.StartFlag = 0;
  701. ass_CalCoef.uwStartUpTargetGain = 0;
  702. swTmpSpdtoTorqCur = ass_swTorq2CurPu(swTeTorAssitPu1);
  703. slTmpSmoothCur = ((ULONG)abs(asr_stTorqSpdPIOut.swIqRefPu) << 12) /
  704. swTmpSpdtoTorqCur; // abs(asr_stTorqSpdPIOut.swIqRefPu)/ass_swTorq2CurPu(swTeTorAssitPu1)
  705. if (slTmpSmoothCur > Q12_1)
  706. {
  707. slTmpSmoothCur = Q12_1;
  708. }
  709. else
  710. {}
  711. ass_CalCoef.swSmoothGain = 0;//Q12_1 >> 1;
  712. ass_pvt_uwSpd2TorqCnt = 0;
  713. Ass_FSM = StartupCruise;
  714. }
  715. /* Switch to ReduceCurrent FSM */
  716. if((ass_CalIn.uwcadancePer == 0) || (ass_CalIn.uwGearSt == 0))
  717. {
  718. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  719. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  720. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  721. ass_CalCoef.swAss2SpdCNT = 0;
  722. Ass_FSM = ReduceCurrent;
  723. stStopOrigCoef.k = (SLONG)ass_CalCoef.swSmoothGain;
  724. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  725. }
  726. else if ((ass_CalIn.uwtorquePer <= ass_CalCoef.uwAssStopThreshold)) // Q14
  727. {
  728. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  729. {
  730. ass_CalCoef.swAss2SpdCNT++;
  731. }
  732. if (ass_CalCoef.swAss2SpdCNT > (ass_ParaCong.uwCadPulsePerCirc >> 1)|| ass_CalIn.uwcadance == 0)
  733. {
  734. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  735. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  736. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  737. ass_CalCoef.swAss2SpdCNT = 0;
  738. Ass_FSM = ReduceCurrent;
  739. stStopOrigCoef.k = (SLONG)ass_CalCoef.swSmoothGain;
  740. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  741. }
  742. }
  743. else
  744. {
  745. ass_CalCoef.swAss2SpdCNT = 0;
  746. }
  747. break;
  748. case StartupCruise:
  749. if (ass_CalCoef.StartFlag == 0)
  750. {
  751. ass_CalCoef.swSmoothGain += ass_CalCoef.uwStartUpGainAddStep;// / ass_CalIn.uwGearSt; //助力比斜坡,与用户设置以及档位相关
  752. if (ass_CalCoef.swSmoothGain >= ass_CalCoef.uwStartupCruiseGain)
  753. {
  754. ass_CalCoef.StartFlag = 1;
  755. }
  756. }
  757. else if (ass_CalCoef.StartFlag == 1)
  758. {
  759. ass_CalCoef.swSmoothGain -= ass_CalCoef.uwStartUpGainAddStep;// / ass_CalIn.uwGearSt; //助力比斜坡,与用户设置以及档位相关
  760. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  761. {
  762. ass_CalCoef.swCadanceCNT++;
  763. }
  764. if (ass_CalCoef.swSmoothGain < Q12_1)
  765. {
  766. ass_CalCoef.swSmoothGain = Q12_1;
  767. if (ass_CalCoef.swCadanceCNT > ass_CalCoef.uwStartUpTimeCadenceCnt)
  768. {
  769. Ass_FSM = TorqueAssit;
  770. ass_CalCoef.swAss2SpdCNT = 0;
  771. ass_CalCoef.swCadanceCNT = 0;
  772. ass_CalCoef.sw2StopCNT = 0;
  773. }
  774. }
  775. }
  776. /* Switch to ReduceCurrent FSM */
  777. if((ass_CalIn.uwcadancePer == 0) || (ass_CalIn.uwGearSt == 0))
  778. {
  779. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  780. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  781. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  782. ass_CalCoef.swAss2SpdCNT = 0;
  783. ass_CalCoef.sw2StopCNT = 0;
  784. Ass_FSM = ReduceCurrent;
  785. stStopOrigCoef.k = (SLONG)ass_CalCoef.swSmoothGain;
  786. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  787. }
  788. else if(ass_CalIn.uwtorquePer <= (ass_CalCoef.uwAssStopThreshold))
  789. {
  790. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  791. {
  792. ass_CalCoef.swAss2SpdCNT++;
  793. }
  794. if (ass_CalCoef.swAss2SpdCNT > (ass_ParaCong.uwCadPulsePerCirc >> 1) || ass_CalIn.uwcadancePer == 0)
  795. {
  796. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  797. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  798. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  799. ass_CalCoef.swAss2SpdCNT = 0;
  800. ass_CalCoef.sw2StopCNT = 0;
  801. Ass_FSM = ReduceCurrent;
  802. stStopOrigCoef.k = (SLONG)ass_CalCoef.swSmoothGain;
  803. stStopCoef = ass_stPolynomialcenter(&stStopOrigCoef);
  804. }
  805. }
  806. else
  807. {
  808. ass_CalCoef.swAss2SpdCNT = 0;
  809. }
  810. break;
  811. case ReduceCurrent:
  812. /* Switch to StopAssit FSM */
  813. if ((ass_CalCoef.swSmoothGain <= 0) && (ass_CalIn.uwSpdFbkAbsPu< SPD_RPM2PU(100)))
  814. {
  815. ass_CalCoef.swSmoothGain = 0;
  816. ass_CalCoef.swTorqFilterGain = 0;
  817. ass_voMoveAverageFilterClear(&ass_stTorqMafValue);
  818. ass_CalCoef.swCadanceGain = 0;
  819. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu; // Q15 Q10 (9.625)
  820. asr_stTorqSpdPIOut.slIqRefPu = ((SLONG)ass_CalOut.swTorAssistCurrent) << 16;
  821. asr_stTorqSpdPIOut.swIqRefPu = ass_CalOut.swTorAssistCurrent;
  822. Ass_FSM = StopAssit;
  823. }
  824. else
  825. {
  826. /* Reduce Curret Coef to Zero*/
  827. if(ass_CalCoef.swSmoothGain >=40)
  828. {
  829. ass_CalCoef.swSmoothGain -=40;
  830. }
  831. else
  832. {
  833. ass_CalCoef.swSmoothGain=0;
  834. }
  835. /* Reduce Uq Limit to Zero*/
  836. if(ass_CalOut.swVoltLimitPu >= 20)
  837. {
  838. ass_CalOut.swVoltLimitPu -= 20;
  839. }
  840. else
  841. {
  842. ass_CalOut.swVoltLimitPu = 0;
  843. }
  844. }
  845. break;
  846. case StopAssit:
  847. ass_CalOut.swTorSpdLoopCurrentTemp = 0;
  848. /* Switch to Startup FSM */
  849. if (ass_CalIn.uwbikespeed < 449) // 0.3Hz, (2.19m轮径下 2.36km/h )
  850. {
  851. if (ass_CalIn.uwtorquePer > ass_CalCoef.uwAssThreshold && ass_CalIn.uwcadance > 0)
  852. {
  853. // hw_voPWMOn();
  854. Ass_FSM = Startup;
  855. ass_CalCoef.swTorqFilterGain = 0;
  856. ass_CalCoef.sw2StopCNT = 0;
  857. ass_pvt_swVoltCnt=0;
  858. ass_CalOut.swVoltLimitPu=0;
  859. }
  860. }
  861. else
  862. {
  863. if (ass_CalIn.uwtorquelpf > ((ass_CalCoef.uwAssThreshold * 3)>>3) && ass_CalIn.uwtorquePer > ass_CalCoef.uwAssThreshold && ass_CalIn.uwcadance > 0)
  864. {
  865. // hw_voPWMOn();
  866. ass_CalCoef.swTorqFilterGain = 0;
  867. ass_pvt_uwSpd2TorqCnt = 0;
  868. Ass_FSM = Startup;
  869. ass_CalOut.swSpeedRef = ass_CalIn.uwSpdFbkAbsPu;
  870. ass_CalCoef.sw2StopCNT = 0;
  871. ass_pvt_swVoltCnt=0;
  872. ass_CalOut.swVoltLimitPu=0;
  873. }
  874. }
  875. /* Assit Exit */
  876. if (ass_CalIn.uwcadance == 0 || ass_CalIn.uwtorquelpf < ass_CalCoef.uwAssStopThreshold)
  877. {
  878. ass_CalCoef.sw2StopCNT++;
  879. }
  880. else
  881. {
  882. if (ass_CalCoef.sw2StopCNT >= 1)
  883. {
  884. ass_CalCoef.sw2StopCNT--;
  885. }
  886. }
  887. if ((ass_CalCoef.sw2StopCNT > TIME_MS2CNT(3000)) || (ass_CalIn.uwGearSt == 0))// 3s
  888. {
  889. ass_CalCoef.sw2StopCNT = 0;
  890. ass_CalCoef.blAssistflag = FALSE;
  891. }
  892. break;
  893. default:
  894. break;
  895. }
  896. /* Bikespeed Limit */
  897. if (ass_CalIn.uwbikespeed <= ass_CurLimCoef.uwBikeSpdThresHold1)
  898. {
  899. ass_CalCoef.swBikeSpeedGain = Q12_1; // Q12
  900. }
  901. else if (ass_CalIn.uwbikespeed > ass_CurLimCoef.uwBikeSpdThresHold1 && ass_CalIn.uwbikespeed <= ass_CurLimCoef.uwBikeSpdThresHold2)
  902. {
  903. ass_CalCoef.swBikeSpeedGain =
  904. Q12_1 -
  905. ((((SQWORD)ass_CalIn.uwbikespeed - (SQWORD)ass_CurLimCoef.uwBikeSpdThresHold1) * (SQWORD)ass_CurLimCoef.ulBikeSpdDeltInv) >> 28); // Q12
  906. uwTorqAccStep = 10;
  907. uwTorqDecStep = 10;
  908. }
  909. else
  910. {
  911. ass_CalCoef.swBikeSpeedGain = 0;
  912. uwTorqAccStep = 10;
  913. uwTorqDecStep = 10;
  914. }
  915. /* Assist Current Output in each FSM */
  916. switch (Ass_FSM)
  917. {
  918. case Startup:
  919. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  920. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  921. ass_CalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  922. ass_CalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  923. if (ass_CalOut.swTorAss2CurrentTemp > ass_CalCoef.swCurrentmax_torAssPu)
  924. {
  925. ass_CalOut.swTorAss2CurrentTemp = ass_CalCoef.swCurrentmax_torAssPu;
  926. }
  927. if (ass_CalOut.swCadAss2CurrentTemp > ass_CalCoef.swCurrentmax_cadAssPu)
  928. {
  929. ass_CalOut.swCadAss2CurrentTemp = ass_CalCoef.swCurrentmax_cadAssPu;
  930. }
  931. ass_CalOut.swTorRefTarget = ass_CalOut.swTorAss2CurrentTemp + ass_CalOut.swCadAss2CurrentTemp;
  932. ass_CalOut.swTorRefEnd = ass_CalOut.swTorRefTarget;
  933. if (ass_CalCoef.StartFlag==0)
  934. {
  935. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection * 13000;
  936. }
  937. else
  938. {
  939. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection *ass_CalOut.swTorRefEnd;
  940. }
  941. break;
  942. case TorqueAssit:
  943. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  944. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  945. ass_CalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  946. ass_CalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  947. if (ass_CalOut.swTorAss2CurrentTemp > ass_CalCoef.swCurrentmax_torAssPu)
  948. {
  949. ass_CalOut.swTorAss2CurrentTemp = ass_CalCoef.swCurrentmax_torAssPu;
  950. }
  951. if (ass_CalOut.swCadAss2CurrentTemp > ass_CalCoef.swCurrentmax_cadAssPu)
  952. {
  953. ass_CalOut.swCadAss2CurrentTemp = ass_CalCoef.swCurrentmax_cadAssPu;
  954. }
  955. #if CURSWITCH
  956. /* Ajust CurrentRef growth and decline rate */
  957. ass_CalOut.swTorRefTarget = ass_CalOut.swTorAss2CurrentTemp + ass_CalOut.swCadAss2CurrentTemp;
  958. if((ass_CalOut.swTorRefTarget - ass_CalOut.swTorRefEnd) > 2)
  959. {
  960. ass_pvt_uwTorqAccCnt++;
  961. if(ass_pvt_uwTorqAccCnt >= 2)
  962. {
  963. ass_CalOut.swTorRefEnd += uwTorqAccStep;
  964. ass_pvt_uwTorqAccCnt = 0;
  965. }
  966. }
  967. else if(((ass_CalOut.swTorRefTarget - ass_CalOut.swTorRefEnd) < (-1)))
  968. {
  969. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  970. {
  971. ass_CalOut.swTorRefEnd -= uwTorqDecStep;
  972. }
  973. // ass_pvt_uwTorqDecCnt++;
  974. // if(ass_pvt_uwTorqDecCnt >= 10)
  975. // {
  976. // ass_CalOut.swTorRefEnd += uwTorqAccStep;
  977. // ass_pvt_uwTorqDecCnt = 0;
  978. // }
  979. }
  980. else
  981. {
  982. ass_CalOut.swTorRefEnd = ass_CalOut.swTorRefTarget;
  983. }
  984. ////ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection * ass_CalOut.swTorRefEnd;
  985. #else
  986. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection *(ass_CalOut.swTorAss2CurrentTemp + ass_CalOut.swCadAss2CurrentTemp);
  987. #endif
  988. /* Torq Clzloop Test */
  989. if(ass_CalIn.uwtorquelpf <= ass_CalCoef.uwSwitch1TorqThreshold)
  990. {
  991. if(!ass_CalOut.blTorqPIFlg)
  992. {
  993. /* Initial value */
  994. ass_stTorqPIOut.slIRefPu = 0;
  995. swCurSwitch = abs(ass_CalOut.swTorRefTarget); //abs(ass_CalOut.swAssitCurRef);
  996. ass_CalOut.blTorqPIFlg = TRUE;
  997. }
  998. ass_stTorqPIIn.swTorqRefPu = ass_CalIn.uwtorquelpf ; //torsensor_test_Lpf.slY.sw.hi ; //ass_CalIn.uwtorque;
  999. ass_stTorqPIIn.swTorqFdbPu = ass_CalCoef.uwSwitch1TorqThreshold;
  1000. ass_stTorqPIIn.swImaxPu = 0;
  1001. ass_stTorqPIIn.swIminPu = -swCurSwitch;
  1002. ass_voAssitTorqPI(&ass_stTorqPIIn,&ass_stTorqPIOut);
  1003. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection *(swCurSwitch + ass_stUqLimMafValue.slAverValue);
  1004. }
  1005. else
  1006. {
  1007. ass_CalOut.blTorqPIFlg = FALSE;
  1008. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection * ass_CalOut.swTorRefEnd;
  1009. }
  1010. break;
  1011. case StartupCruise:
  1012. swTeTorAssitPu2 = swTeTorAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1013. swTeCadAssitPu2 = swTeCadAssitPu1 ; // Q14+Q12-Q12+Q12-Q12=Q14
  1014. ass_CalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1015. ass_CalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1016. if (ass_CalOut.swTorAss2CurrentTemp > ass_CalCoef.swCurrentmax_torAssPu)
  1017. {
  1018. ass_CalOut.swTorAss2CurrentTemp = ass_CalCoef.swCurrentmax_torAssPu;
  1019. }
  1020. if (ass_CalOut.swCadAss2CurrentTemp > ass_CalCoef.swCurrentmax_cadAssPu)
  1021. {
  1022. ass_CalOut.swCadAss2CurrentTemp = ass_CalCoef.swCurrentmax_cadAssPu;
  1023. }
  1024. #if CURSWITCH
  1025. /* Ajust CurrentRef growth and decline rate */
  1026. ass_CalOut.swTorRefTarget = ass_CalOut.swTorAss2CurrentTemp + ass_CalOut.swCadAss2CurrentTemp;
  1027. if((ass_CalOut.swTorRefTarget - ass_CalOut.swTorRefEnd) > 2)
  1028. {
  1029. ass_pvt_uwTorqAccCnt++;
  1030. if(ass_pvt_uwTorqAccCnt >= 1)
  1031. {
  1032. ass_CalOut.swTorRefEnd += uwTorqAccStep;
  1033. ass_pvt_uwTorqAccCnt = 0;
  1034. }
  1035. }
  1036. else if(((ass_CalOut.swTorRefTarget - ass_CalOut.swTorRefEnd) < (-1)))
  1037. {
  1038. if (ass_CalIn.uwcadance != ass_CalIn.uwcadancelast)
  1039. {
  1040. ass_CalOut.swTorRefEnd -= uwTorqDecStep;
  1041. }
  1042. }
  1043. else
  1044. {
  1045. ass_CalOut.swTorRefEnd = ass_CalOut.swTorRefTarget;
  1046. }
  1047. if(ass_CalOut.swTorRefEnd < ass_CalOut.swTorSpdLoopCurrentTemp)
  1048. {
  1049. ass_CalOut.swTorRefEnd = ass_CalOut.swTorSpdLoopCurrentTemp;
  1050. //ass_CalOut.swTorSpdLoopCurrentTemp = 0; // 启动前电流最小为速度环电流,启动后最小电流为0
  1051. }
  1052. else
  1053. {
  1054. ass_CalOut.swTorRefEnd = ass_CalOut.swTorRefEnd;
  1055. }
  1056. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection * ass_CalOut.swTorRefEnd;
  1057. #else
  1058. ass_CalOut.swTorAssistCurrentTemp = ass_CalOut.swTorAss2CurrentTemp + ass_CalOut.swCadAss2CurrentTemp;
  1059. if(ass_CalOut.swTorAssistCurrentTemp < ass_CalOut.swTorSpdLoopCurrentTemp)
  1060. {
  1061. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection*ass_CalOut.swTorSpdLoopCurrentTemp;
  1062. //ass_CalOut.swTorSpdLoopCurrentTemp = 0; // 启动前电流最小为速度环电流,启动后最小电流为0
  1063. }
  1064. else
  1065. {
  1066. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection * ass_CalOut.swTorAssistCurrentTemp;
  1067. }
  1068. #endif
  1069. break;
  1070. case ReduceCurrent:
  1071. swTeTorAssitPu2 = swTeTorAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1072. swTeCadAssitPu2 = swTeCadAssitPu1; // Q14+Q12-Q12+Q12-Q12=Q14
  1073. ass_CalOut.swTorAss2CurrentTemp = ass_swTorq2CurPu(swTeTorAssitPu2); // Q14 电流指令计算
  1074. ass_CalOut.swCadAss2CurrentTemp = ass_swTorq2CurPu(swTeCadAssitPu2); // Q14 电流指令计算
  1075. if (ass_CalOut.swTorAss2CurrentTemp > ass_CalCoef.swCurrentmax_torAssPu)
  1076. {
  1077. ass_CalOut.swTorAss2CurrentTemp = ass_CalCoef.swCurrentmax_torAssPu;
  1078. }
  1079. if (ass_CalOut.swCadAss2CurrentTemp > ass_CalCoef.swCurrentmax_cadAssPu)
  1080. {
  1081. ass_CalOut.swCadAss2CurrentTemp = ass_CalCoef.swCurrentmax_cadAssPu;
  1082. }
  1083. ass_CalOut.swTorAssistCurrentTemp = ass_CalIn.swDirection *(ass_CalOut.swTorAss2CurrentTemp + ass_CalOut.swCadAss2CurrentTemp);
  1084. break;
  1085. case SpeedAssit:
  1086. ass_CalOut.swTorAssistCurrentTemp = asr_stTorqSpdPIOut.swIqRefPu; // ass_CalOut.swTorSpdLoopCurrentTemp;
  1087. break;
  1088. case Spd2Torq:
  1089. ass_CalOut.swTorAssistCurrentTemp = asr_stTorqSpdPIOut.swIqRefPu; // ass_CalOut.swTorSpdLoopCurrentTemp;
  1090. ass_CalOut.swTorRefEnd = ass_CalOut.swTorAssistCurrentTemp;
  1091. break;
  1092. case StopAssit:
  1093. ass_CalOut.swTorAssistCurrentTemp = 0;
  1094. ass_CalOut.swTorRefEnd = 0;
  1095. break;
  1096. default:
  1097. break;
  1098. }
  1099. /* Assist Iqref Output */
  1100. ass_CalOut.swTorAssistCurrent = ass_CalOut.swTorAssistCurrentTemp;
  1101. mth_voLPFilter(ass_CalOut.swTorAssistCurrent, &ass_pvt_stCurLpf);
  1102. /* Bikespeed Limit Coef*/
  1103. ass_CalOut.swAssitCurRef = ((SLONG)ass_pvt_stCurLpf.slY.sw.hi * ass_CalCoef.swBikeSpeedGain) >> 12;
  1104. //ass_CalOut.swAssitCurRef =ass_CalOut.swTorAssistCurrent;
  1105. }
  1106. /**
  1107. * @brief Three order polynomial Y = a*X^3 + b*X^2 + c*x +d
  1108. *
  1109. * @param coef polynomial coefficient a, b, c, d
  1110. * @param Value polynomial input value X
  1111. * @param Qnum polynomial input Q type
  1112. * @return UWORD polynomial output Y
  1113. */
  1114. static void ass_voAssitCurLim(UWORD gear, UWORD uwBikeSpeedHzPu, UWORD uwCurMaxPu)
  1115. {
  1116. /* Limit the Output Current according to Bike Gear */
  1117. UWORD uwIqLimitTemp1;
  1118. uwIqLimitTemp1 = ((ULONG)ass_CurLimCoef.uwLimitGain[gear] * uwCurMaxPu) >> 10;
  1119. ass_CurLimOut.uwIqlimit = uwIqLimitTemp1;
  1120. }
  1121. /**
  1122. * @brief
  1123. *
  1124. * @param
  1125. * @return
  1126. */
  1127. static void ass_voAssistCurLimBMS(UWORD uwSOCvalue)
  1128. {
  1129. /* Limit the Output Current according to Bike SOC */
  1130. if (uwSOCvalue < ass_CurLimCalBMSCoef.uwIqLimitStartSoc && uwSOCvalue > ass_CurLimCalBMSCoef.uwIqLimitEndSoc)
  1131. {
  1132. ass_CurLimitCalBMSOut.uwIqLimitAbs =
  1133. ass_CurLimCalBMSCoef.uwIqLimitInitAbs - (((SLONG)ass_CurLimCalBMSCoef.uwIqLimitStartSoc - uwSOCvalue) * ass_CurLimCalBMSCoef.swIqLImitK);
  1134. }
  1135. else if (uwSOCvalue <= ass_CurLimCalBMSCoef.uwIqLimitEndSoc)
  1136. {
  1137. ass_CurLimitCalBMSOut.uwIqLimitAbs = 0;
  1138. }
  1139. else
  1140. {
  1141. ass_CurLimitCalBMSOut.uwIqLimitAbs = ass_CurLimCalBMSCoef.uwIqLimitInitAbs;
  1142. }
  1143. }
  1144. /**
  1145. * @brief Assist function
  1146. *
  1147. * @param coef polynomial coefficient a, b, c, d
  1148. * @param Value polynomial input value X
  1149. * @param Qnum polynomial input Q type
  1150. * @return UWORD polynomial output Y
  1151. */
  1152. void ass_voAssist(void)
  1153. {
  1154. /* Start Assist Jduge */
  1155. if (((ass_CalIn.uwtorquePer > ass_CalCoef.uwAssThreshold && ass_CalIn.uwcadancePer > 0) || ass_CalIn.uwtorquePer > 3000) && ass_CalIn.uwGearSt > 0)
  1156. {
  1157. ass_CalCoef.blAssistflag = TRUE;
  1158. }
  1159. if (ass_CalCoef.blAssistflag == TRUE)
  1160. {
  1161. /* Calculate Iqref Limit */
  1162. UWORD IqLimitTemp;
  1163. ass_voAssitCurLim(ass_CalIn.uwGearSt, ass_CalIn.uwbikespeed, ass_ParaCong.uwCofCurMaxPu);
  1164. ass_voAssistCurLimBMS(ass_CalIn.SOCValue);
  1165. IqLimitTemp = (ass_CurLimOut.uwIqlimit < ass_CalIn.swFlxIqLimit)
  1166. ? (ass_CurLimOut.uwIqlimit < ass_CalIn.swPwrIqLimit ? ass_CurLimOut.uwIqlimit : ass_CalIn.swPwrIqLimit)
  1167. : (ass_CalIn.swFlxIqLimit < ass_CalIn.swPwrIqLimit ? ass_CalIn.swFlxIqLimit : ass_CalIn.swPwrIqLimit);
  1168. ass_CalCoef.uwCurrentMaxPu = (IqLimitTemp < ass_CurLimitCalBMSOut.uwIqLimitAbs) ? IqLimitTemp : ass_CurLimitCalBMSOut.uwIqLimitAbs;
  1169. ass_CalCoef.swCurrentmax_torAssPu = ((SLONG)ass_CalCoef.uwCurrentMaxPu * ass_ParaSet.uwTorWeight) >> 12; // Q14
  1170. ass_CalCoef.swCurrentmax_cadAssPu = ((SLONG)ass_CalCoef.uwCurrentMaxPu * ass_ParaSet.uwCadenceWeight) >> 12;
  1171. /* Calculate Assist Current, Iqref*/
  1172. AssitCuvApplPerVolt();
  1173. /* Iqref Limit */
  1174. if (ass_CalOut.swAssitCurRef > ass_CalCoef.uwCurrentMaxPu)
  1175. {
  1176. ass_CalOut.swAssitCurRef = ass_CalCoef.uwCurrentMaxPu;
  1177. }
  1178. else if(ass_CalOut.swAssitCurRef < -(SWORD)ass_CalCoef.uwCurrentMaxPu)
  1179. {
  1180. ass_CalOut.swAssitCurRef = -(SWORD)ass_CalCoef.uwCurrentMaxPu;
  1181. }
  1182. else
  1183. {}
  1184. }
  1185. else
  1186. {
  1187. ass_CalOut.swAssitCurRef = 0;
  1188. }
  1189. }
  1190. /**
  1191. * @brief
  1192. *
  1193. * @param
  1194. * @return
  1195. */
  1196. void ass_voMoveAverageFilter(MAF_IN *in)
  1197. {
  1198. in->slSum -= in->swBuffer[in->uwIndex];
  1199. in->swBuffer[in->uwIndex] = in->swValue;
  1200. in->slSum += (SQWORD)in->swValue;
  1201. if (!in->blSecFlag)
  1202. {
  1203. in->slAverValue = (SLONG)(in->slSum / (in->uwIndex + 1));
  1204. }
  1205. else
  1206. {
  1207. in->slAverValue = (SLONG)(in->slSum / in->uwLength);
  1208. }
  1209. in->uwIndex++;
  1210. if (in->uwIndex >= in->uwLength)
  1211. {
  1212. in->blSecFlag = TRUE;
  1213. in->uwIndex = 0;
  1214. }
  1215. }
  1216. void ass_voMoveAverageFilterClear(MAF_IN *in)
  1217. {
  1218. UWORD i;
  1219. in->uwIndex = 0;
  1220. in->slSum = 0;
  1221. in->blSecFlag = FALSE;
  1222. for (i = 0; i < 64; i++)
  1223. {
  1224. in->swBuffer[i] = 0;
  1225. }
  1226. }