adc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: adc.c
  4. Partner Filename: adc.h
  5. Description: Get the adc conversion results
  6. Complier: IAR Embedded Workbench for ARM 7.80, IAR Systems.
  7. CPU TYPE : GD32F3x0
  8. *************************************************************************
  9. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _ADCDRV_C_
  20. #define _ADCDRV_C_
  21. #endif
  22. /************************************************************************
  23. Included File:
  24. *************************************************************************/
  25. #include "syspar.h"
  26. #include "user.h"
  27. #include "Temp.h"
  28. #include "api.h"
  29. #include "api_rt.h"
  30. /************************************************************************
  31. Constant Table:
  32. *************************************************************************/
  33. /************************************************************************
  34. Exported Functions:
  35. *************************************************************************/
  36. /***************************************************************
  37. Function: adc_voCalibration;
  38. Description: Get phase A and B current zero point, other A/D sample value
  39. Call by: main() before InitADC;
  40. Input Variables: N/A
  41. Output/Return Variables: ADCTESTOUT
  42. Subroutine Call: N/A
  43. Reference: N/A
  44. ****************************************************************/
  45. void adc_voCalibration(ADC_COF *cof, ADC_DOWN_OUT *out1, ADC_UP_OUT *out2)
  46. {
  47. if (out1->blADCCalibFlg == FALSE || out2->blADCCalibFlg == FALSE)
  48. {
  49. if (!hw_blChrgOvrFlg)
  50. {
  51. hw_voCharge();
  52. }
  53. else
  54. {
  55. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  56. {
  57. pwm_stGenOut.uwRDSONTrig = 129;
  58. pwm_stGenOut.uwSigRTrig = HW_HHHPWM_PERIOD;
  59. pwm_stGenOut.blSampleCalibFlag = TRUE;
  60. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  61. {
  62. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH];
  63. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  64. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  65. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  66. out1->uwADCCalibCt++;
  67. }
  68. else
  69. {
  70. hw_voPWMInit(); // mos up charge and adc calib over; pwm off
  71. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  72. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  73. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  74. out1->ulIaRegSum = 0;
  75. out1->ulIbRegSum = 0;
  76. out1->ulIcRegSum = 0;
  77. pwm_stGenOut.blSampleCalibFlag = FALSE;
  78. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> ADC_CALIB_INDEX);
  79. out1->ulIdcRegSum = 0;
  80. out1->uwADCCalibCt = 0;
  81. out1->blADCCalibFlg = TRUE;
  82. out2->uwADCCalibCt = 0;
  83. out2->blADCCalibFlg = TRUE;
  84. }
  85. }
  86. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  87. {
  88. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  89. {
  90. out1->ulIdcRegSum += iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] + adc_uwADDMAPhase2;
  91. out1->uwADCCalibCt++;
  92. }
  93. else if (out2->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  94. {
  95. out2->uwADCCalibCt++;
  96. }
  97. else
  98. {
  99. hw_voPWMInit();
  100. cof->uwIdcOffset = (UWORD)(out1->ulIdcRegSum >> (ADC_CALIB_INDEX + 1));
  101. out1->ulIdcRegSum = 0;
  102. out1->uwADCCalibCt = 0;
  103. out1->blADCCalibFlg = TRUE;
  104. out2->uwADCCalibCt = 0;
  105. out2->blADCCalibFlg = TRUE;
  106. }
  107. }
  108. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  109. {
  110. if (out1->uwADCCalibCt < (1 << ADC_CALIB_INDEX))
  111. {
  112. out1->ulIaRegSum += iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  113. out1->ulIbRegSum += iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  114. out1->ulIcRegSum += iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  115. out1->uwADCCalibCt++;
  116. }
  117. else
  118. {
  119. hw_voPWMInit();
  120. cof->uwIaOffset = (UWORD)(out1->ulIaRegSum >> (ADC_CALIB_INDEX));
  121. cof->uwIbOffset = (UWORD)(out1->ulIbRegSum >> (ADC_CALIB_INDEX));
  122. cof->uwIcOffset = (UWORD)(out1->ulIcRegSum >> (ADC_CALIB_INDEX));
  123. out1->ulIaRegSum = 0;
  124. out1->ulIbRegSum = 0;
  125. out1->ulIcRegSum = 0;
  126. out1->uwADCCalibCt = 0;
  127. out1->blADCCalibFlg = TRUE;
  128. out2->uwADCCalibCt = 0;
  129. out2->blADCCalibFlg = TRUE;
  130. }
  131. }
  132. else
  133. {
  134. //do noting
  135. }
  136. }
  137. }
  138. }
  139. /***************************************************************
  140. Function: adc_voSample;
  141. Description: Get three-phase current value after zero point and gain process
  142. Call by: functions in TBC;
  143. Input Variables: ADCIABFIXCOF
  144. Output/Return Variables: ADCTESTOUT
  145. Subroutine Call:
  146. Reference: N/A
  147. ****************************************************************/
  148. void adc_voSampleDown(const ADC_COF *cof, ADC_DOWN_OUT *out) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  149. {
  150. UWORD uwIpeakPu;
  151. if(cp_stFlg.CurrentSampleModelSelect == COMBINATION)
  152. {
  153. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  154. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  155. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  156. out->slSampIaPu = -(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  157. out->slSampIbPu = -(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  158. out->slSampIcPu = -(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  159. out->swIaPu = (SWORD)((out->slSampIaPu * (SLONG)cof->uwCalibcoef) >> 10);
  160. out->swIbPu = (SWORD)((out->slSampIbPu * (SLONG)cof->uwCalibcoef) >> 10);
  161. out->swIcPu = (SWORD)((out->slSampIcPu * (SLONG)cof->uwCalibcoef) >> 10);
  162. }
  163. else if(cp_stFlg.CurrentSampleModelSelect == SINGLERESISITANCE)
  164. {
  165. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  166. /* Register value */
  167. out->uwFirstCurREG = iAdc_GetResultPointer(2)[HW_ADC_IDC_CH]; // Q12
  168. out->uwSecondCurREG = adc_uwADDMAPhase2; // Q12
  169. tmp_swIphase1 = (SWORD)out->uwFirstCurREG - (SWORD)cof->uwIdcOffset;
  170. tmp_swIphase1 = (SWORD)((tmp_swIphase1 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  171. tmp_swIphase2 = (SWORD)cof->uwIdcOffset - (SWORD)out->uwSecondCurREG;
  172. tmp_swIphase2 = (SWORD)((tmp_swIphase2 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  173. tmp_swIphase3 = (SWORD)out->uwSecondCurREG - (SWORD)out->uwFirstCurREG;
  174. tmp_swIphase3 = (SWORD)((tmp_swIphase3 * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  175. out->uwADCSector = pwm_stGenOut.uwNewSectorNum;
  176. switch (pwm_stGenOut.uwNewSectorNum)
  177. {
  178. case 1:
  179. out->swIbPu = tmp_swIphase1; // v
  180. out->swIcPu = tmp_swIphase2; //-w
  181. out->swIaPu = tmp_swIphase3; // u
  182. break;
  183. case 2:
  184. out->swIaPu = tmp_swIphase1; // u
  185. out->swIbPu = tmp_swIphase2; //-v
  186. out->swIcPu = tmp_swIphase3;
  187. break;
  188. case 3:
  189. out->swIaPu = tmp_swIphase1; // u
  190. out->swIcPu = tmp_swIphase2; //-w
  191. out->swIbPu = tmp_swIphase3;
  192. break;
  193. case 4:
  194. out->swIcPu = tmp_swIphase1; // w
  195. out->swIaPu = tmp_swIphase2; //-u
  196. out->swIbPu = tmp_swIphase3;
  197. break;
  198. case 5:
  199. out->swIbPu = tmp_swIphase1; // v
  200. out->swIaPu = tmp_swIphase2; //-u
  201. out->swIcPu = tmp_swIphase3;
  202. break;
  203. case 6:
  204. out->swIcPu = tmp_swIphase1; // w
  205. out->swIbPu = tmp_swIphase2; //-v
  206. out->swIaPu = tmp_swIphase3;
  207. break;
  208. default:
  209. out->swIaPu = 0;
  210. out->swIbPu = 0;
  211. out->swIcPu = 0;
  212. break;
  213. }
  214. }
  215. else if(cp_stFlg.CurrentSampleModelSelect == RDSON)
  216. {
  217. SWORD tmp_swIphase1, tmp_swIphase2, tmp_swIphase3;
  218. out->uwIaReg = iAdc_GetResultPointer(1)[HW_ADC_IA_CH];
  219. out->uwIbReg = iAdc_GetResultPointer(1)[HW_ADC_IB_CH];
  220. out->uwIcReg = iAdc_GetResultPointer(1)[HW_ADC_IC_CH];
  221. tmp_swIphase1 = (SWORD)-(((SWORD)out->uwIaReg - (SWORD)cof->uwIaOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  222. tmp_swIphase2 = (SWORD)-(((SWORD)out->uwIbReg - (SWORD)cof->uwIbOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  223. tmp_swIphase3 = (SWORD)-(((SWORD)out->uwIcReg - (SWORD)cof->uwIcOffset) * (SLONG)cof->uwCurReg2Pu >> 10); // Q14=Q24-Q10
  224. switch (pwm_stGenOut.uwSampleArea)
  225. {
  226. case IgnoreNone:
  227. out->swIaPu = tmp_swIphase1;
  228. out->swIbPu = tmp_swIphase2;
  229. out->swIcPu = tmp_swIphase3;
  230. break;
  231. case IgnoreA:
  232. out->swIaPu = -tmp_swIphase2 - tmp_swIphase3;
  233. out->swIbPu = tmp_swIphase2;
  234. out->swIcPu = tmp_swIphase3;
  235. break;
  236. case IgnoreB:
  237. out->swIaPu = tmp_swIphase1;
  238. out->swIbPu = -tmp_swIphase1 - tmp_swIphase3;
  239. out->swIcPu = tmp_swIphase3;
  240. break;
  241. case IgnoreC:
  242. out->swIaPu = tmp_swIphase1;
  243. out->swIbPu = tmp_swIphase2;
  244. out->swIcPu = tmp_swIphase3;
  245. break;
  246. case IgnoreAB:
  247. out->swIaPu = -tmp_swIphase3 >> 1;
  248. out->swIbPu = -tmp_swIphase3 >> 1;
  249. out->swIcPu = tmp_swIphase3;
  250. break;
  251. case IgnoreBC:
  252. out->swIaPu = tmp_swIphase1;
  253. out->swIbPu = -tmp_swIphase1 >> 1;
  254. out->swIcPu = -tmp_swIphase1 >> 1;
  255. break;
  256. case IgnoreAC:
  257. out->swIaPu = -tmp_swIphase2 >> 1;
  258. out->swIbPu = tmp_swIphase2;
  259. out->swIcPu = -tmp_swIphase2 >> 1;
  260. break;
  261. default:
  262. break;
  263. }
  264. }
  265. else
  266. {
  267. //do nothing
  268. }
  269. /* Current absolute value & max value */
  270. if ((out->swIaPu) >= 0)
  271. {
  272. out->uwIaAbsPu = (UWORD)out->swIaPu;
  273. }
  274. else
  275. {
  276. out->uwIaAbsPu = (UWORD)-out->swIaPu;
  277. }
  278. if ((out->swIbPu) >= 0)
  279. {
  280. out->uwIbAbsPu = (UWORD)out->swIbPu;
  281. }
  282. else
  283. {
  284. out->uwIbAbsPu = (UWORD)-out->swIbPu;
  285. }
  286. if ((out->swIcPu) >= 0)
  287. {
  288. out->uwIcAbsPu = (UWORD)out->swIcPu;
  289. }
  290. else
  291. {
  292. out->uwIcAbsPu = (UWORD)-out->swIcPu;
  293. }
  294. uwIpeakPu = out->uwIaAbsPu > out->uwIbAbsPu ? out->uwIaAbsPu : out->uwIbAbsPu;
  295. uwIpeakPu = out->uwIcAbsPu > uwIpeakPu ? out->uwIcAbsPu : uwIpeakPu;
  296. out->uwIpeakPu = uwIpeakPu;
  297. }
  298. void adc_voSampleUp(const ADC_COF *cof, ADC_UP_OUT *out)
  299. {
  300. /* Register value */
  301. out->uwVdcReg = iAdc_GetResultPointer(0)[HW_ADC_UDC_CH];
  302. out->uwU6VReg = iAdc_GetResultPointer(0)[HW_ADC_U6V_CH];
  303. out->uwU5VReg = iAdc_GetResultPointer(0)[HW_ADC_U5V_CH];
  304. out->PCBTempReg = iAdc_GetResultPointer(0)[HW_ADC_PCBTEMP_CH];
  305. out->TorqTempReg = iAdc_GetResultPointer(0)[HW_ADC_MOTTEMP_CH];
  306. out->uwU12VReg = iAdc_GetResultPointer(0)[HW_ADC_U12V_CH];
  307. out->uwThrottleReg = iAdc_GetResultPointer(0)[HW_ADC_THRO_CH];
  308. out->uwVdcPu = (UWORD)((ULONG)out->uwVdcReg * cof->uwVdcReg2Pu >> 10); // Q14=Q24-Q10
  309. /* Vdc LPF */
  310. out->uwVdcLpfPu = ((out->uwVdcPu - out->uwVdcLpfPu) >> 1) + out->uwVdcLpfPu;
  311. out->uwU6VPu = (UWORD)((ULONG)out->uwU6VReg * cof->uwU6VReg2Pu >> 10); // Q14=Q24-Q10;
  312. out->uwU5VPu = (UWORD)((ULONG)out->uwU5VReg * cof->uwU5VReg2Pu >> 10); // Q14=Q24-Q10;
  313. out->uwU12VPu = (UWORD)((ULONG)out->uwU12VReg * cof->uwU12VReg2Pu >> 10); // Q14=Q24-Q10;
  314. out->MotorTempR = out->MotorTempReg * cof->swMotorTempKcof >> 10; // Q14=Q24-Q10;
  315. ////////////////// Single Resitance Current Sample//////////////////////////////////////////////////////
  316. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  317. {
  318. switch (pwm_stGenOut.uwSingelRSampleArea)
  319. {
  320. case 0:
  321. out->swCalibIaPu = 0;
  322. out->swCalibIbPu = 0;
  323. out->swCalibIcPu = 0;
  324. break;
  325. case SampleA:
  326. out->swCalibIaPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  327. break;
  328. case SampleB:
  329. out->swCalibIbPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  330. break;
  331. case SampleC:
  332. out->swCalibIcPu = -(SWORD)((((SWORD)iAdc_GetResultPointer(2)[HW_ADC_IDC_CH] - (SWORD)cof->uwIdcOffset) * (SLONG)cof->uwCurIdcReg2Pu) >> 10); // Q14=Q24-Q10
  333. break;
  334. default:
  335. break;
  336. }
  337. }
  338. ////////////////// PCB TEMP//////////////////////////////////////////////////////
  339. out->PCBTempR = (UWORD)((ULONG)4096 * PCB_TEMP_SAMPLER / out->PCBTempReg - PCB_TEMP_SAMPLER); // Q14=Q24-Q10;
  340. PcbTempCal((SWORD)out->PCBTempR);
  341. out->PCBTemp = tmp_PcbTemp;
  342. }
  343. static SWORD adc_pvt_swSingleReg;
  344. static SLONG adc_pvt_slRdsonReg;
  345. static LPF_OUT adc_pvt_stRdsonCoefLpf;
  346. static UWORD adc_pvt_uwCalGainFlg;
  347. static ULONG adc_pvt_ulGainTemp1;
  348. void adc_voSRCalibration(ADC_COF *cof, const ADC_UP_OUT *up_out, const ADC_DOWN_OUT *down_out)
  349. {
  350. if (pwm_stGenOut.blSampleCalibFlag == TRUE)
  351. {
  352. switch (pwm_stGenOut.uwSingelRSampleArea)
  353. {
  354. case 0:
  355. break;
  356. case SampleA:
  357. if(adc_pvt_swSingleReg > up_out->swCalibIaPu)
  358. {
  359. adc_pvt_swSingleReg = up_out->swCalibIaPu;
  360. }
  361. if(adc_pvt_slRdsonReg > down_out->slSampIaPu)
  362. {
  363. adc_pvt_slRdsonReg = down_out->slSampIaPu;
  364. }
  365. break;
  366. case SampleB:
  367. if(adc_pvt_swSingleReg > up_out->swCalibIbPu)
  368. {
  369. adc_pvt_swSingleReg = up_out->swCalibIbPu;
  370. }
  371. if(adc_pvt_slRdsonReg > down_out->slSampIbPu)
  372. {
  373. adc_pvt_slRdsonReg = down_out->slSampIbPu;
  374. }
  375. break;
  376. case SampleC:
  377. if(adc_pvt_swSingleReg > up_out->swCalibIcPu)
  378. {
  379. adc_pvt_swSingleReg = up_out->swCalibIcPu;
  380. }
  381. if(adc_pvt_slRdsonReg > down_out->slSampIcPu)
  382. {
  383. adc_pvt_slRdsonReg = down_out->slSampIcPu;
  384. }
  385. break;
  386. default:
  387. break;
  388. }
  389. adc_pvt_uwCalGainFlg = 1;
  390. }
  391. else
  392. {
  393. if(scm_uwSpdFbkLpfAbsPu <= 2500)
  394. {
  395. adc_pvt_ulGainTemp1 = 1300;
  396. }
  397. else
  398. {
  399. if(adc_pvt_uwCalGainFlg ==1)
  400. {
  401. adc_pvt_ulGainTemp1 = (SLONG)((SLONG)adc_pvt_swSingleReg << 10) / (SLONG)adc_pvt_slRdsonReg;
  402. if(adc_pvt_ulGainTemp1 > cof->uwCalibcoefMax)
  403. {
  404. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMax;
  405. }
  406. else if(adc_pvt_ulGainTemp1 < cof->uwCalibcoefMin)
  407. {
  408. adc_pvt_ulGainTemp1 = cof->uwCalibcoefMin;
  409. }
  410. else
  411. {
  412. //do nothing
  413. }
  414. adc_pvt_uwCalGainFlg = 0;
  415. }
  416. else
  417. {
  418. adc_pvt_swSingleReg = 0;
  419. adc_pvt_slRdsonReg = 0;
  420. }
  421. }
  422. mth_voLPFilter((SWORD)adc_pvt_ulGainTemp1, &adc_pvt_stRdsonCoefLpf);
  423. cof->uwCalibcoef = adc_pvt_stRdsonCoefLpf.slY.sw.hi;
  424. }
  425. ////////////////////////////////////////////////////////////////////////////////////
  426. }
  427. /***************************************************************
  428. Function: adc_voSampleCoef;
  429. Description: Get other A/D sample value
  430. Call by: functions in Mainloop;
  431. Input Variables: ADCIABFIXCOF
  432. Output/Return Variables: ADCTESTOUT
  433. Subroutine Call:
  434. Reference: N/A
  435. ****************************************************************/
  436. void adc_voSampleCoef(ADC_COF *cof)
  437. {
  438. cof->uwCurReg2Pu = ((UQWORD)ADC_IPHASE_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT - 1)) / IBASE; // Q24
  439. cof->uwCurIdcReg2Pu = ((UQWORD)ADC_IDC_CUR_MAX_AP << 24) / (1 << (ADC_RESOLUTION_BIT)) / IBASE; // Q24
  440. cof->uwVdcReg2Pu = ((UQWORD)ADC_VDC_MAX_VT << 24) / (1 << ADC_RESOLUTION_BIT) / VBASE; // Q24
  441. cof->uwUabcReg2Pu = ((UQWORD)ADC_UABC_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24
  442. cof->uwU6VReg2Pu = ((UQWORD)ADC_LIGHT_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  443. cof->uwU5VReg2Pu = ((UQWORD)ADC_SPDSENSOR_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  444. cof->uwU12VReg2Pu = ((UQWORD)ADC_DISPLAY_MAX_VT << 24) / (1 << (ADC_RESOLUTION_BIT)) / VBASE; // Q24;
  445. cof->uwCalibcoef = 1024;
  446. cof->uwCalibcoefMax = 2048;
  447. cof->uwCalibcoefMin = 200;
  448. cof->uwCalibCoefK = 160; // q10
  449. mth_voLPFilterCoef(1000000 / 30, FTBC_HZ, &adc_pvt_stRdsonCoefLpf.uwKx); //100Hz
  450. }
  451. /***************************************************************
  452. Function: adc_voSampleInit;
  453. Description: ADC sample initialization
  454. Call by: mn_voSoftwareInit;
  455. Input Variables: N/A
  456. Output/Return Variables: N/A
  457. Subroutine Call:
  458. Reference: N/A
  459. ****************************************************************/
  460. void adc_voSampleInit(void)
  461. {
  462. adc_stDownOut.swIaPu = 0;
  463. adc_stDownOut.swIbPu = 0;
  464. adc_stDownOut.swIcPu = 0;
  465. adc_stDownOut.uwIaAbsPu = 0;
  466. adc_stDownOut.uwIbAbsPu = 0;
  467. adc_stDownOut.uwIcAbsPu = 0;
  468. adc_stDownOut.uwIpeakPu = 0;
  469. adc_stDownOut.uwIaReg = 0;
  470. adc_stDownOut.uwIbReg = 0;
  471. adc_stDownOut.uwIcReg = 0;
  472. adc_stDownOut.uwFirstCurREG = 0;
  473. adc_stDownOut.uwSecondCurREG = 0;
  474. adc_stDownOut.uwADCSector = 0;
  475. adc_stDownOut.uwIaAvgPu = 0;
  476. adc_stDownOut.uwIbAvgPu = 0;
  477. adc_stDownOut.uwIcAvgPu = 0;
  478. adc_stUpOut.uwVdcPu = 0;
  479. adc_stUpOut.uwVdcLpfPu = 0;
  480. adc_stUpOut.uwU6VPu = 0;
  481. adc_stUpOut.uwU5VPu = 0;
  482. adc_stUpOut.uwU12VPu = 0;
  483. adc_stUpOut.uwTrottlePu = 0;
  484. adc_stUpOut.PCBTemp = 0;
  485. adc_stUpOut.MotorTemp = 0;
  486. adc_stUpOut.uwVdcReg = 0;
  487. adc_stUpOut.uwU6VReg = 0;
  488. adc_stUpOut.uwU5VReg = 0;
  489. adc_stUpOut.uwU12VReg = 0;
  490. adc_stUpOut.uwThrottleReg = 0;
  491. adc_stUpOut.PCBTempReg = 0;
  492. adc_stUpOut.MotorTempReg = 0;
  493. adc_stUpOut.swCalibIaPu = 0;
  494. adc_stUpOut.swCalibIbPu = 0;
  495. adc_stUpOut.swCalibIcPu = 0;
  496. adc_stDownOut.ulUaRegSum = 0;
  497. adc_stDownOut.ulUbRegSum = 0;
  498. adc_stDownOut.ulUcRegSum = 0;
  499. adc_stDownOut.ulIdcRegSum = 0;
  500. adc_stDownOut.ulIaRegSum = 0;
  501. adc_stDownOut.ulIbRegSum = 0;
  502. adc_stDownOut.ulIcRegSum = 0;
  503. adc_stDownOut.uwADCCalibCt = 0;
  504. adc_stDownOut.blADCCalibFlg = FALSE;
  505. adc_stUpOut.uwADCCalibCt = 0;
  506. adc_stUpOut.blADCCalibFlg = FALSE;
  507. adc_stUpOut.swIPMTempCe = 0;
  508. }
  509. /*************************************************************************
  510. Local Functions (N/A)
  511. *************************************************************************/
  512. /************************************************************************
  513. Copyright (c) 2018 Welling Motor Technology(Shanghai) Co. Ltd.
  514. All rights reserved.
  515. *************************************************************************/
  516. #ifdef _ADCDRV_C_
  517. #undef _ADCDRV_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  518. #endif
  519. /*************************************************************************
  520. End of this File (EOF)!
  521. Do not put anything after this part!
  522. *************************************************************************/