spi_master.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. /************************************************************************
  2. Project: Welling Motor Control Paltform
  3. Filename: spi_master.c
  4. Partner Filename: spi_master.h
  5. Description: SPI master driver
  6. Complier: IAR Embedded Workbench for ARM 8.40.2
  7. CPU TYPE : GD32F30x
  8. *************************************************************************
  9. Copyright (c) 2022 Welling Motor Technology(Shanghai) Co. Ltd.
  10. All rights reserved.
  11. *************************************************************************
  12. *************************************************************************
  13. Revising History (ECL of this file):
  14. ************************************************************************/
  15. /************************************************************************
  16. Beginning of File, do not put anything above here except notes
  17. Compiler Directives:
  18. *************************************************************************/
  19. #ifndef _SPI_MASTER_C_
  20. #define _SPI_MASTER_C_
  21. #endif
  22. /************************************************************************
  23. Included File
  24. *************************************************************************/
  25. #include "user.h"
  26. /*************************************************************************
  27. Exported Functions (N/A)
  28. *************************************************************************/
  29. /*************************************************************************
  30. Function:
  31. Description:
  32. Call by:
  33. Input Variables:
  34. Output/Return Variables:
  35. Subroutine Call:
  36. Reference:
  37. *************************************************************************/
  38. void spi_voResolverInit(void)
  39. {
  40. spi_stResolverOut.uwSpiThetaTmpZ1Pu = 0;
  41. spi_stResolverOut.swSpdLpfTmpPu = 0;
  42. spi_stResolverOut.swSpdLpfTmpZ1Pu = 0;
  43. spi_stResolverOut.uwSpiThetaPu = 0;
  44. spi_stResolverOut.uwSpiOrignData = 0;
  45. spi_stResolverOut.slPllThetaPu = 0;
  46. spi_stResolverOut.uwPllThetaPu = 0;
  47. spi_stResolverOut.slThetaErrPu = 0;
  48. spi_stResolverOut.slThetaErrZ1Pu = 0;
  49. spi_stResolverOut.slThetaDeltaErrPu = 0;
  50. spi_stResolverOut.swSpdFbkPu = 0;
  51. spi_stResolverOut.swPllSpdFbkPu = 0;
  52. spi_stResolverOut.slPllSpdFbkPu = 0;
  53. spi_stResolverOut.swSpdFbkLpfPu = 0;
  54. }
  55. /*************************************************************************
  56. Function:
  57. Description:
  58. Call by:
  59. Input Variables:
  60. Output/Return Variables:
  61. Subroutine Call:
  62. Reference:
  63. *************************************************************************/
  64. void spi_voResolverCoef(SPI_RESOLVER_COEFIN *in, SPI_RESOLVER_COEF *out)
  65. {
  66. UWORD uwMvcPu;
  67. ULONG ulDamper;
  68. UWORD uwDamper;
  69. if (in->uwFbHz < 10)
  70. {
  71. in->uwFbHz = 10;
  72. }
  73. else if (in->uwFbHz > 10000)
  74. {
  75. in->uwFbHz = 10000;
  76. }
  77. else
  78. {
  79. //do noting
  80. }
  81. if (in->uwFreqTbcHz < 10)
  82. {
  83. in->uwFreqTbcHz = 10;
  84. }
  85. if (in->uwSpdPllMcoef > 100)
  86. {
  87. in->uwSpdPllMcoef = 100;
  88. }
  89. out->uwCurTs = (UWORD)(((ULONG)in->uwFbHz << 10) / in->uwFreqTbcHz); // Q10, TBC time
  90. out->uwCurTsPu = (UWORD)(((ULONG)205887 * in->uwFbHz) / in->uwFreqTbcHz); // Q15, Q15(2pi)-->205887
  91. // /************************Speed PLL Coefficient*****************************/
  92. // out->uwSpdPllKpPu = in->uwSpdPllKpPu; //Q14
  93. // out->uwSpdPllKiPu = in->uwSpdPllKiPu; //Q14
  94. /************************Speed PLL Coefficient*****************************/
  95. uwMvcPu = (UWORD)(((ULONG)in->uwSpdPllWvcHz << 10) / in->uwFbHz); // Q10
  96. /* PLL Kp=M*w/sqrt(1+M^2) */
  97. ulDamper = (1 + in->uwSpdPllMcoef * in->uwSpdPllMcoef) << 8; // Q8
  98. uwDamper = (UWORD)mth_slSqrt((SLONG)ulDamper); // Q4
  99. if(uwDamper == 0)
  100. {
  101. uwDamper = 1;
  102. }
  103. out->uwSpdPllKpPu = (UWORD)(((ULONG)in->uwSpdPllMcoef * uwMvcPu / uwDamper) << 8); // Q10-Q4+Q8=Q14
  104. /* PLL Ki=w^2*T_cnt_ctrl/sqrt(1+M^2) */
  105. out->uwSpdPllKiPu = (UWORD)(((((ULONG)uwMvcPu * out->uwCurTsPu) / uwDamper) * uwMvcPu) >> 17); // Q10+Q15-Q4+Q10-Q17=Q14
  106. }
  107. /*************************************************************************
  108. Function:
  109. Description:
  110. Call by:
  111. Input Variables:
  112. Output/Return Variables:
  113. Subroutine Call:
  114. Reference:
  115. *************************************************************************/
  116. void spi_voMagneticDetection(void)
  117. {
  118. UWORD MGL, MGH;
  119. MGL = (UWORD)gpio_input_bit_get(GPIOB, GPIO_PIN_0);
  120. MGH = (UWORD)gpio_input_bit_get(GPIOB, GPIO_PIN_1);
  121. if ((MGL != 0) || (MGH != 0))
  122. {
  123. spi_stResolverOut.blMagRangeFltFlg = TRUE; // ! can not indicate magnet range fault
  124. }
  125. else
  126. {
  127. spi_stResolverOut.blMagRangeFltFlg = FALSE;
  128. }
  129. }
  130. /*************************************************************************
  131. Function:
  132. Description:
  133. Call by:
  134. Input Variables:
  135. Output/Return Variables:
  136. Subroutine Call:
  137. Reference:
  138. *************************************************************************/
  139. static SLONG spi_pvt_slSpdFbkLpfPu, spi_pvt_slSpdLpfTmpPu;
  140. void spi_voResolver(const SPI_RESOLVER_COEF *coef, SPI_RESOLVER_OUT *out)
  141. {
  142. UWORD uwSpiThetaTmpPu = 0, uwSpiThetaTmpPu2 = 0;
  143. SWORD swThetaErrPu = 0, swThetaCompPu = 0;
  144. SWORD swSpdTmpPu = 0, swSpdErrPu = 0;
  145. ULONG ulTmp1 = 0, ulTmp2 = 0;
  146. if (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) == SET)
  147. {
  148. uwSpiThetaTmpPu = (UWORD)(((ULONG)(spi_i2s_data_receive(SPI2))) >> 1);
  149. uwSpiThetaTmpPu &= 0x7FF8;
  150. uwSpiThetaTmpPu2 = uwSpiThetaTmpPu;
  151. swThetaCompPu = (SWORD)(((SLONG)out->swSpdLpfTmpPu * TLatency_TM) >> 10); // Q15, Consider decoding and SPI Latency:10us
  152. ulTmp1 = uwSpiThetaTmpPu + swThetaCompPu + out->swSpiThetaOffsetPu + cof_sl720DegreePu;
  153. uwSpiThetaTmpPu = (UWORD)(ulTmp1 & 0x7FFF);
  154. ulTmp2 = uwSpiThetaTmpPu2 + cof_sl720DegreePu;
  155. uwSpiThetaTmpPu2 = (UWORD)(ulTmp2 & 0x7FFF);
  156. out->uwSpiOrignData = uwSpiThetaTmpPu2;
  157. /* Calculate speed: Differentiation method */
  158. swThetaErrPu = (SWORD)uwSpiThetaTmpPu - (SWORD)out->uwSpiThetaTmpZ1Pu;
  159. out->uwSpiThetaTmpZ1Pu = uwSpiThetaTmpPu;
  160. if (swThetaErrPu <= -cof_sl180DegreePu)
  161. {
  162. swThetaErrPu = (SWORD)(swThetaErrPu + cof_sl360DegreePu);
  163. }
  164. if (swThetaErrPu >= cof_sl180DegreePu)
  165. {
  166. swThetaErrPu = (SWORD)(swThetaErrPu - cof_sl360DegreePu);
  167. }
  168. swSpdTmpPu = (SWORD)(((SLONG)swThetaErrPu * DIFF_COEF_TBC) >> 10); // Q15
  169. /* Judge the correctness of spi position*/
  170. spi_pvt_slSpdLpfTmpPu = (SLONG)0x0277 * (swSpdTmpPu - out->swSpdLpfTmpPu) + spi_pvt_slSpdLpfTmpPu; // 50Hz Q30
  171. out->swSpdLpfTmpPu = (SWORD)(spi_pvt_slSpdLpfTmpPu >> 15);
  172. swSpdErrPu = out->swSpdLpfTmpPu - out->swSpdLpfTmpZ1Pu;
  173. out->swSpdLpfTmpZ1Pu = out->swSpdLpfTmpPu;
  174. if ((swSpdErrPu < USER_MOTOR_1000RPM2PU) && (swSpdErrPu > -USER_MOTOR_1000RPM2PU))
  175. {
  176. out->uwSpiThetaPu = uwSpiThetaTmpPu;
  177. out->blSpiThetaFltFlg = FALSE;
  178. }
  179. else
  180. {
  181. out->blSpiThetaFltFlg = TRUE;
  182. }
  183. }
  184. else
  185. {
  186. out->blSpiThetaFltFlg = TRUE;
  187. }
  188. out->swSpdFbkPu = swSpdTmpPu;
  189. /*Calculate speed: PLL method*/
  190. SLONG slThetaErrPu,slThetaDeltaErrPu,slPllThetaPu;
  191. SLONG slKpTmpPu,slKitTmpPu,slPllSpdFbkPu;
  192. ULONG ulSpdPllKpPu,ulSpdPllKiPu;
  193. slThetaErrPu = (SLONG)out->uwSpiThetaPu - (out->uwPllThetaPu + (((SLONG)out->swPllSpdFbkPu * coef->uwCurTs) >> 10)); //Q15
  194. if (slThetaErrPu >= cof_sl180DegreePu)
  195. {
  196. slThetaErrPu-= cof_sl360DegreePu;
  197. }
  198. if(slThetaErrPu <= -cof_sl180DegreePu)
  199. {
  200. slThetaErrPu += cof_sl360DegreePu;
  201. }
  202. slThetaDeltaErrPu = slThetaErrPu - out->slThetaErrZ1Pu;
  203. out->slThetaErrZ1Pu = slThetaErrPu;
  204. /* Variable parameter PI,untested*/
  205. // if(out->swPllSpdFbkPu < cof_uw1000RpmPu - cof_uw200RpmPu)
  206. // {
  207. // ulSpdPllKpPu = coef->uwSpdPllKpPu;
  208. // ulSpdPllKiPu = coef->uwSpdPllKiPu;
  209. // }
  210. // else if((out->swPllSpdFbkPu > cof_uw1000RpmPu) && (out->swPllSpdFbkPu < cof_uw2000RpmPu - cof_uw200RpmPu))
  211. // {
  212. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 2;
  213. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 2 * 2;
  214. // }
  215. // else if((out->swPllSpdFbkPu > cof_uw2000RpmPu) && (out->swPllSpdFbkPu < cof_uw3000RpmPu - cof_uw200RpmPu))
  216. // {
  217. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 4;
  218. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 4 * 4;
  219. // }
  220. // else if((out->swPllSpdFbkPu > cof_uw3000RpmPu) && (out->swPllSpdFbkPu < cof_uw4000RpmPu - cof_uw200RpmPu))
  221. // {
  222. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 8;
  223. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 8 * 8;
  224. // }
  225. // else if (out->swPllSpdFbkPu > cof_uw4000RpmPu)
  226. // {
  227. // ulSpdPllKpPu = coef->uwSpdPllKpPu * 16;
  228. // ulSpdPllKiPu = coef->uwSpdPllKiPu * 16 * 16;
  229. // }
  230. ulSpdPllKpPu = coef->uwSpdPllKpPu;
  231. ulSpdPllKiPu = coef->uwSpdPllKiPu;
  232. slKpTmpPu = slThetaDeltaErrPu * (SLONG)ulSpdPllKpPu; //Q15+Q14=Q29
  233. slKitTmpPu = slThetaErrPu * (SLONG)ulSpdPllKiPu;
  234. slPllSpdFbkPu = slKpTmpPu + slKitTmpPu + out->slPllSpdFbkPu;
  235. if(slPllSpdFbkPu >= 0x20000000)
  236. {
  237. slPllSpdFbkPu = 0x20000000-1; //Q29
  238. }
  239. if(slPllSpdFbkPu <= -0x20000000)
  240. {
  241. slPllSpdFbkPu = -0x20000000; //Q29
  242. }
  243. out->slPllSpdFbkPu = slPllSpdFbkPu; //Q29
  244. out->swPllSpdFbkPu = (SWORD)(slPllSpdFbkPu >> 14); //Q15
  245. slPllThetaPu = out->slPllThetaPu + (((SLONG)out->swPllSpdFbkPu * coef->uwCurTs) << 4); //Q15+Q10+Q4=Q29
  246. if(slPllThetaPu >= 0x20000000)
  247. {
  248. slPllThetaPu -= 0x20000000;
  249. }
  250. if(slPllThetaPu < 0)
  251. {
  252. slPllThetaPu += 0x20000000;
  253. }
  254. out->slPllThetaPu = slPllThetaPu;
  255. out->uwPllThetaPu = (UWORD)((ULONG)slPllThetaPu >> 14); //Q15 = Q29 - Q14
  256. // spi_pvt_slSpdFbkLpfPu = (SLONG)0x00FF * (out->swPllSpdFbkPu - out->swSpdFbkLpfPu) + spi_pvt_slSpdFbkLpfPu; //20Hz Q30
  257. // out->swSpdFbkLpfPu = spi_pvt_slSpdFbkLpfPu >> 15;
  258. }
  259. /*************************************************************************
  260. Function:
  261. Description:
  262. Call by:
  263. Input Variables:
  264. Output/Return Variables:
  265. Subroutine Call:
  266. Reference:
  267. *************************************************************************/
  268. void spi_voResolverLock(void)
  269. {
  270. /* CS signal enable */
  271. IO_SPI2_NSS_ENABLE;
  272. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  273. {}
  274. spi_i2s_data_transmit(SPI2,0x0550);
  275. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  276. {}
  277. /* CS signal disable */
  278. IO_SPI2_NSS_DISABLE;
  279. }
  280. /*************************************************************************
  281. Function:
  282. Description:
  283. Call by:
  284. Input Variables:
  285. Output/Return Variables:
  286. Subroutine Call:
  287. Reference:
  288. *************************************************************************/
  289. void spi_voReadWriteSeneorReg(void) /* parasoft-suppress METRICS-28 "本项目圈复杂度无法更改,后续避免" */
  290. {
  291. UWORD uwReadBCTReg = 0, uwReadETXY = 0;
  292. UWORD uwWriteBCTReg = 0, uwWriteETXY = 0, uwWriteRD = 0;
  293. UWORD SPI_DelayCnt1 = 0, SPI_DelayCnt2 = 0;
  294. /* Read the BCT register value */
  295. IO_SPI2_NSS_ENABLE; /*!< CS signal enable,for data update */
  296. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  297. {}
  298. spi_i2s_data_transmit(SPI2, 0x4200); //comp value
  299. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  300. {}
  301. IO_SPI2_NSS_DISABLE;
  302. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  303. {}
  304. uwReadBCTReg = spi_i2s_data_receive(SPI2); /*!< Read the first time */
  305. IO_SPI2_NSS_ENABLE;
  306. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  307. {}
  308. spi_i2s_data_transmit(SPI2, 0x0000); /*!< Write the second time */
  309. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  310. {}
  311. IO_SPI2_NSS_DISABLE;
  312. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  313. {}
  314. uwReadBCTReg = spi_i2s_data_receive(SPI2); /*!< Read the BCT register value */
  315. /* Read the ETX ETY value */
  316. IO_SPI2_NSS_ENABLE;
  317. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  318. {}
  319. spi_i2s_data_transmit(SPI2, 0x4300); //comp direction
  320. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  321. {}
  322. IO_SPI2_NSS_DISABLE;
  323. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  324. {}
  325. uwReadETXY = spi_i2s_data_receive(SPI2); /*!< Read the first time */
  326. IO_SPI2_NSS_ENABLE;
  327. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  328. {}
  329. spi_i2s_data_transmit(SPI2, 0x0000); /*!< Write the second time */
  330. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TRANS) != RESET)
  331. {}
  332. IO_SPI2_NSS_DISABLE;
  333. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  334. {}
  335. uwReadETXY = spi_i2s_data_receive(SPI2); /*!< Read the ETX ETY value */
  336. if (uwReadBCTReg == 0x3000 && uwReadETXY == 0x0100)
  337. {
  338. spi_blReadRegCorrectFlg = TRUE;
  339. }
  340. else
  341. {
  342. spi_blReadRegCorrectFlg = FALSE;
  343. }
  344. /* Write MA702 BCT, EXY, RD Register */
  345. if ((spi_blReadRegCorrectFlg == FALSE) && (spi_blWriteRegFinishFlg == FALSE))
  346. //if (spi_blWriteRegFinishFlg == FALSE)
  347. {
  348. /* Write and Read BCT value*/
  349. IO_SPI2_NSS_ENABLE; // Data update
  350. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)// Discontinuous transmission, can not indicate send complete
  351. {}
  352. spi_i2s_data_transmit(SPI2, 0x8230); // LSB,BCT=48
  353. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  354. {}
  355. uwWriteBCTReg = spi_i2s_data_receive(SPI2);
  356. IO_SPI2_NSS_DISABLE;
  357. /* Delay at least 22ms */
  358. while (SPI_DelayCnt2 < 20)
  359. {
  360. SPI_DelayCnt1++;
  361. if (SPI_DelayCnt1 == 10000)
  362. {
  363. SPI_DelayCnt2++;
  364. SPI_DelayCnt1 = 0;
  365. }
  366. }
  367. IO_SPI2_NSS_ENABLE;
  368. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  369. {}
  370. spi_i2s_data_transmit(SPI2, 0x0000);
  371. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  372. {}
  373. uwWriteBCTReg = spi_i2s_data_receive(SPI2);
  374. IO_SPI2_NSS_DISABLE;
  375. /* Write and Read ETX or ETY */
  376. IO_SPI2_NSS_ENABLE;
  377. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  378. {}
  379. spi_i2s_data_transmit(SPI2, 0x8301);
  380. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  381. {}
  382. uwWriteETXY = spi_i2s_data_receive(SPI2);
  383. IO_SPI2_NSS_DISABLE;
  384. /* Delay at least 22ms */
  385. SPI_DelayCnt2 = 0;
  386. while (SPI_DelayCnt2 < 20)
  387. {
  388. SPI_DelayCnt1++;
  389. if (SPI_DelayCnt1 == 10000)
  390. {
  391. SPI_DelayCnt2++;
  392. SPI_DelayCnt1 = 0;
  393. }
  394. }
  395. IO_SPI2_NSS_ENABLE;
  396. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  397. {}
  398. spi_i2s_data_transmit(SPI2, 0x0000);
  399. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  400. {}
  401. uwWriteETXY = spi_i2s_data_receive(SPI2);
  402. IO_SPI2_NSS_DISABLE;
  403. /* Write and Read RD value*/
  404. IO_SPI2_NSS_ENABLE;
  405. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  406. {}
  407. spi_i2s_data_transmit(SPI2, 0x8980); // RD=1,Counterclockwise,8980; RD=0,Clockwise,8900
  408. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  409. {}
  410. uwWriteRD = spi_i2s_data_receive(SPI2);
  411. IO_SPI2_NSS_DISABLE;
  412. /* Delay at least 22ms */
  413. SPI_DelayCnt2 = 0;
  414. while (SPI_DelayCnt2 < 20)
  415. {
  416. SPI_DelayCnt1++;
  417. if (SPI_DelayCnt1 == 10000)
  418. {
  419. SPI_DelayCnt2++;
  420. SPI_DelayCnt1 = 0;
  421. }
  422. }
  423. IO_SPI2_NSS_ENABLE;
  424. while (spi_i2s_flag_get(SPI2, SPI_FLAG_TBE) != SET)
  425. {}
  426. spi_i2s_data_transmit(SPI2, 0x0000);
  427. while (spi_i2s_flag_get(SPI2, SPI_FLAG_RBNE) != SET)
  428. {}
  429. uwWriteRD = spi_i2s_data_receive(SPI2);
  430. IO_SPI2_NSS_DISABLE;
  431. if (uwWriteBCTReg == 0x3000 && uwWriteETXY == 0x0100 && uwWriteRD == 0x8000) // MSB
  432. {
  433. spi_blWriteRegFinishFlg = TRUE; // Need stored in EEPROM
  434. }
  435. else
  436. {
  437. spi_blWriteRegFinishFlg = FALSE;
  438. }
  439. }
  440. }
  441. /*************************************************************************
  442. Local Functions (N/A)
  443. *************************************************************************/
  444. /*************************************************************************
  445. Copyright (c) 2022 Welling Motor Technology(Shanghai) Co. Ltd.
  446. All rights reserved.
  447. *************************************************************************/
  448. #ifdef _SPI_MASTER_C_
  449. #undef _SPI_MASTER_C_ /* parasoft-suppress MISRA2004-19_6 "本项目中无法更改,后续避免使用" */
  450. #endif
  451. /*************************************************************************
  452. End of this File (EOF)!
  453. Do not put anything after this part!
  454. *************************************************************************/